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Reactions and Separations

The U.S. Dept. of Energy estimates that there are more 
than 40,000 distillation columns in North America, 
and that they consume about 40% of the total energy 

used to operate plants in the refining and bulk chemical 
industries (1). Improving the energy efficiency of this unit 
operation, therefore, is important to achieving overall plant 
energy savings. 
 Reducing the energy consumption of distillation columns 
is not straightforward. First, columns come in many configu-
rations with different operating objectives. These 
differences lead to distinct dynamic behaviors and 
different operational degrees of freedom, which 
necessitate specialized control configurations to 
optimize energy usage. In addition, many columns 
are subject to significant interaction among the 
control loops and have numerous constraints or 
limits on their operation, further complicating the 
dynamics and making it even more difficult to 
optimize control. 
 The operation of distillation columns typi-
cally involves a tradeoff between energy usage 
and product recovery, and setting the proper target 
involves evaluating the relative economic value 
of these two factors. However, distillation is a 
non linear process, and normal product-valuation 
patterns add more nonlinearity to the economic 
objective function. Thus, calculating the correct 
operational targets can be complicated. 
 Many books and papers have been published 
on advanced control of distillation columns and 
the design and analysis of these controls (2–4); 

the book by Blevins, et al. (2) provides a good introduction 
to the topic. This article discusses the nonlinear economic 
aspects of distillation control optimization and demonstrates 
a technique for calculating the correct energy-usage targets. 

Recapping column basics
 A two-product trayed column with typical controls is 
shown in Figure 1. The column separates the feed into two 
products, at least one of which is subject to a specification 
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p Figure 1. A distillation column is often controlled based on reboiler duty and reflux rate.
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limiting the amount of impurities it may contain. At a fixed 
feed rate and pressure, the two major variables that can be 
manipulated to regulate the column are the reboiler duty (E), 
which may be controlled by a temperature controller, and 
the reflux rate (R). In some cases, depending on the feed rate 
and composition, as well as the specific impurity targets for 
a particular column, there may be no feasible set of reflux 
and reboiler targets that meet the operating objectives, there 
may be one feasible set of targets, or there may be a region 
of operation with multiple targets that allow the column to 
produce on-spec material. 
 The steady-state equations governing simple binary 
distillation are the overall material balance (Eq. 1) and the 
component i material balance (Eq. 2):

F = B + D  (1)
FxFi = BxBi + DxDi  (2)

where F, B, and D are the feed, bottoms, and distillate flow-
rates, and x is the mole fraction of component i in the stream.
 From these equations, the following relationship can  
be derived:

B/F = (xFi – xDi)/(xBi – xDi)  (3)

 The light (l ) and heavy (h) key components are the com-
ponents with close boiling points that the column is designed 
to separate. For example, in a light hydrocarbon debutanizer, 
they are typically butane and pentane. 
 The separation factor, S, is defined as the ratio of the 
light-key component fraction to the heavy-key component 
fraction in the distillate divided by the same ratio in the bot-
tom product:

S = (xDl/xDh)/(xBl/xBh)  (4)

 If the value of the separation factor for all components is 
known, then the steady-state material balance equations can 
be solved, which in turn defines the column’s performance. 
 The separation factor for a given column and feed com-
ponent mix is a function of energy input — as the reflux and 
energy input increase, the separation factor increases. For a 

binary distillation with constant relative volatility and total 
reflux, the limiting-case analytical solution for calculating 
the minimum number of theoretical trays is known as the 
Fenske equation (5). For multicomponent distillation, empir-
ical rules may be used to calculate the separation factor(s), 
although the more common approach today is to perform a 
detailed tray-to-tray distillation simulation.
 This article is based on column simulations performed 
using Version 6.5.1 of ChemSep (www.chemsep.com), with 
the Peng-Robinson equation of state for the thermodynamic 
properties and ideal enthalpies corrected via the “excess” 
option. The column was assumed to have 10 ideal stages 
with the feed on Stage 5. The feed was assumed to be equal 
molar quantities of propane, butane, pentane, and hexane.

Economic valuation of control improvements
 The following procedure is commonly used to ana-
lyze the economic benefits of improved control, such as 
multi variable control or improved online measurements. 
The variability of the controlled variable is first analyzed 
under normal operating conditions (Figure 2, left). The 
initial operating target for the controlled variable is set at 
a conservative distance from its specification limit. This 
limit usually relates to a physical limit in the plant, such as 
a maximum temperature or maximum valve opening, or to a 
product quality specification. Next, new instrumentation or 
control technology is introduced, which should reduce the 
variability of the controlled variable (Figure 2, center). The 
operating target can then be moved closer to the specifica-
tion limit (Figure 2, right). Generally, the new operating 
target is more economically advantageous than the old one, 
and the economic difference is projected as the value of the 
improved control. 
 The quantitative economic evaluation starts with a statis-
tical analysis of the current variability of the process variable 
of interest. This usually involves converting the time series 
data (Figure 3a) to a curve (Figure 3b) representing the 
relative frequency of occurrence of the variable of inter-
est; this curve is called the probability distribution function 

p Figure 2. Improved control usually reduces variability in the controlled 
variable, allowing the operating target to be moved closer to its limit.

p Figure 3. The time-series composition data (a) are converted to a 
frequency of occurrence (b), or probability distribution function (PDF).
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(PDF). In many cases, the data are assumed to be adequately 
represented by the normal (Gaussian) statistical distribution, 
which simplifies the subsequent calculations.
 To calculate the overall economic value of improved 
control, one must assign economic value as a function of the 
variable of interest (Figure 4). The economic value func-
tion for a distillation column might be the operating margin 
(product value minus feed cost minus energy cost) at the 
required separation. Here, the variable is composition and 
the valuation function increases linearly with this variable. 
 The economic value plotted in Figure 4a is calculated by 
projecting each point in the base-case PDF (Figure 3b) to its 
corresponding point in the valuation function. The mean, or 
expected overall economic value, is calculated by weight-
ing — i.e., by multiplying the individual economic values by 
their frequency of occurrence (which is the PDF value at that 
point). The statistical distribution under improved control is 
estimated in the same way and the expected economic value 
for the new distribution is then calculated (Figure 4b). 
 One often-overlooked conclusion is that if the process 
data have a Gaussian distribution and the economic valua-
tion function is linear, there is no change in the economic 

value if the mean is constant 
— that is, a reduction in stan-
dard deviation has no direct 
economic impact. Since the 
distribution is symmetric, the 
loss from negative deviations 
is exactly offset by the gain 
from positive deviations. 
 The improved economic 
value comes from moving  
the average operating point 
in the direction of higher 
economic value. This usually 

involves moving closer to an operating limit, with the new 
target chosen based on an acceptable probability of violat-
ing the limit. The new operating point has a higher expected 
economic value; the difference between this higher value 
and the base-case value is the value of the improved control 
(Figure 4b). Under these assumptions, the most profitable 
operating point is the one closest to the limit that does not 
result in economically significant off-spec product. Refer-
ence 6 presents the equations for the change in expected 
profit when the target is moved closer to the limit if there is a 
linear objective function and Gaussian variable distributions. 
 While this analysis is correct, it does not consider some 
economic effects that could come into play as a result of 
nonlinearities. This article reviews some of these issues and 
discusses how they can be evaluated. Reference 7 analyzes 
and presents equations for the case where the objective func-
tion is quadratic and the variable distribution is Gaussian.

Case study
 The economic valuation methodology will be demon-
strated through a specific case study. The column depicted 
in Figure 5 has the feed and product characteristics listed 
in Table 1. Note that both products have tiered, discontinu-
ous pricing: product within specification has one value, 
while out-of-specification product has a different, lower 

p Figure 4. The economic value of the product is plotted as a function of the process variable of interest for the 
base case (a) and the improved-control case (b).

p Figure 5. The column’s top and bottom streams have tiered pricing 
whereby off-spec material has a lower value than product that meets 
specifications.

Table 1. Data for the case study.

Stream
Composition/ 
Specification Value

Feed, 20,000 bbl/d 25% C3  
25% nC4  
25% nC5  
25% nC6  

$60/bbl

Bottoms Product = C5 ≤5% C4 $80/bbl

>5% C4 $60/bbl

Top Product = C4 ≤3% C5 $60/bbl

>3% C5 $40/bbl

Steam $15/MBtu

Limit

Original
Distribution

P
ro

d
uc

t 
V

al
ue

, $
/d

ay

P
ro

d
uc

t 
V

al
ue

, $
/d

ay

Composition Composition

ba

Expected
Value

Limit

Projected
Distribution

Move
Average
Closer to
Limit to
Increase

Value

Valuation
Function Expected

Value

Valuation
Function

≤3%C5

$60/bbl

>3%C5

$40/bbl

>5%C4

$60/bbl

≤5%C4

$80/bbl

Feed
$60/bbl

C5+ Product 

C4 Product On-Spec
Product

Off-Spec
Product

On-Spec
Product

Off-Spec
Product



38 www.aiche.org/cep March 2012 CEP

Reactions and Separations

value. (This is very common for most unit operations, not 
just distillation.)
 If the top product (the light key), butane, is within 
specification (i.e., ≤3% C5), it is fed to a downstream unit 
for further processing and eventual sale. Off-specification 
butane goes to a tank and may be reprocessed or used as 
fuel (which is of lower value). Similarly, the bottom product 
(heavy key), pentane, is used in another part of the plant 
or fed to a pipeline to produce a higher-value product if it 
meets specifications (≤5% C4), and off-specification pentane 
may be sent to a tank for reprocessing. 

Setting operating targets 
 To choose the bottoms temperature setpoint, first assume 
that the reflux rate is fixed, and that the bottom product is 
on-spec but the top product is off-spec because of its high 
pentane content. This would correspond to a very high bot-
toms temperature. Next assume that the bottoms temperature 

target is slowly reduced. Figure 6 plots the operating margin 
for the column based on the assumed prices in Table 1. As 
the temperature is reduced, the amount of bottom product 
increases and the percentage of top product (butane) in the 
bottom stream also increases. As the amount of pentane (the 
more-valuable bottom product) increases, the total product 
value increases. 
 The economic value function contains two discontinui-
ties. The first, which occurs when the composition of the 
bottom product is about 1.0% butane, corresponds to a 
change in the top product from off-spec to on-spec. The sec-
ond discontinuity occurs when the bottom product becomes 
off-spec at 5% butane. 
 Normally one would select a temperature target such that 
the bottoms composition is as close to the specification limit 
as possible. There will always be some variability in the 
control performance due to external disturbances and limita-
tions on loop control action. If composition control is poor 
and highly variable, the observed composition probability 
distribution function might have the shape labeled Initial 
Variability in Figure 7. The product composition target is the 
mean value of the PDF. 
 The mean value of the operating margin is calculated 
based on the weighted average composition of the initial dis-
tribution — i.e., the percentage at each composition is mul-
tiplied by the margin value at that composition to determine 
the overall value. Figure 7 shows the projected initial mean 
value of the operating margin for a case where variability in 
control results in some of the bottom product being off-spec-
ification with lower value. The mean product value does not 
correspond to the value at the mean of the product composi-
tions (which is also the operating target). This is because of 
the nonsymmetrical nature of the objective function and the 
low value of off-spec material.
 It may be possible to reduce the variability through 

p Figure 6. Operating margin is a function of the bottoms composition 
(i.e., butane content).

p Figure 7. The mean product value does not correspond to the value at 
the mean of the product compositions. p Figure 8. Reducing variability in control increases the operating margin.
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improved control-valve performance, reduced measurement 
error, or advanced control functionality. With reduced vari-
ability, the projected new mean value of the operating margin 
would be higher at the same operating target (Figure 8). Here, 
reduced variability at the same average bottoms composition 
results in an increase in the overall mean operating margin 
due to the nonlinearity of the economic valuation function. 
 The mean product value can be increased further by mov-
ing the operating target closer to the specification. A seldom-
noted characteristic of this type of nonlinear economic 
valuation function is an optimum target that maximizes 
profitability for any given control variability (i.e., standard 
deviation) that is not at the specification limit. As the target is 
moved closer to the specification, the value of on-spec mate-
rial increases, but the amount of low-value off-spec material 
also increases. There is a point at which the marginal increase 
in the value of on-spec material just equals the decrease in the 
value of off-spec material. This is the optimum target. 
 Figure 9 shows the operating margin as a function of bot-
toms composition setpoint for the case study. An optimum 
setpoint exists for each assumed standard deviation. Hence, 
reduced variability enables the process to move to an opti-
mum setpoint of higher economic value. 
 In other words, it may be more profitable to operate 
the column with a product that is of higher purity than is 
required by the specification, rather than one that just meets 
the specification.

Energy usage analysis
 The preceding discussion involved constant-reflux opera-
tion (Figure 9). Next consider the situation where the reflux 
is varied and the bottoms composition is constant. As the 
reflux flow is increased, the cost of energy for the separation 
increases approximately linearly (Figure 10). The separa-
tion improves, the amount of heavy material in the overhead 

decreases, and the amount of bottom product increases 
correspondingly. However, this increase is not linear — as 
shown in Figure 10, continuing to increase the reflux has a 
diminishingly smaller effect on the compositions. 
 Figure 11 shows the operating margin (i.e., the difference 
between the value of the product and the total cost of the 
feed and energy) for different energy prices, assuming con-
stant product prices. Notice the optimum reflux value, which 
depends on the price of energy. At a high energy price, the 
optimum reflux is the minimum value that just allows the 
column to maintain the top product in specification. At lower 
energy prices, the optimum reflux is actually unconstrained. 
 The conclusion — that operating targets should be a 
function of energy costs rather than a fixed number, even 
with fixed compositional limits — does not seem to be 
widely recognized. It is common to find distillation columns 
operating at reflux rates that are 50% higher than optimum. 
For the case study presented here, such an operation could 
result in a loss of operating margin in excess of $500,000/yr.

p Figure 10. As reflux increases, energy cost increases approximately 
linearly, and the amount of heavy component in the top product decreases.

p Figure 9. The optimum setpoint depends on the amount of variability  
in control. p Figure 11. The optimum reflux depends on the price of energy.
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The impact of control variability  
on energy consumption
 Assume that an optimum target for the impurities in the 
distillate has been calculated and implemented. Figure 12, a 
plot of energy cost vs. overhead distillate composition at a 
fixed bottoms composition, illustrates the impacts of better 
control on energy usage. A mean energy usage value can be 
calculated by projecting each point of the PDF to the energy 
usage curve. Note that here, too, the expected value of the 
objective function (i.e., the economic valuation function) 
does not correspond to the value of the objective function 
at the mean of the distribution. Figure 12a shows the mean 
energy usage with the initial, more-variable control. With 
better control performance and less variability, the PDF is 
tighter, as shown in Figure 12b. The mean energy usage value 
of this PDF, at the same mean composition, is lower. 
 Better control and reduced variability, without any change 
in mean product composition, reduces energy consumption, 
unlike the result for a linear objective function. Figure 13, 
a plot of the expected energy usage as a function of control 
performance standard deviation for the case study, shows the 
impact of reduced control variability on energy cost. 
 It is sometimes stated that precise control of column 
composition is not required because the product is going to a 
tank and the important composition is the final blended com-
position in the tank. However, blending does not change the 
result demonstrated here — improved control leads to lower 
overall energy usage even at the same mean composition. 

Operating pressure effects on energy usage
 It is generally known that reducing the operating pres-
sure of light-hydrocarbon distillation columns reduces 
energy consumption. Yet, many such columns are commonly 
operated well above their potential minimum pressures. 
 During the design phase, the minimum required oper-
ating pressure of a conventional column configuration is 
normally based on the heat-transfer medium used in the con-
denser — the maximum condenser operating temperature is 
estimated based on the medium, and from this the pressure 
required for the target degree of condensation of the desired 
components can be calculated. For example, if air cooling 

is employed, the maximum 
expected ambient-air tem-
perature plus an approach 
(delta) temperature allow-
ance is used to set the design 
condenser temperature, 

which fixes the design pressure. It is also necessary to make 
sure that at the design pressure there is a sufficient differen-
tial between the temperatures of the reboiler heating medium 
and the bottoms material for effective heat transfer.
 However, for most columns in actual operation, the 
minimum pressure limits vary with feed rate, time of day, 
and other conditions in the plant. For the pressure control 
configuration shown in Figure 1, a common limit is the 
valve position in the control loop. The pressure should be 
reduced to the point that the valve is almost fully open but 
still in a controllable range, and then varied to maintain the 
valve in the desired position (as discussed in Ref. 6). There 
may be multiple other operating limits on the minimum 
pressure, and control constraint logic (e.g., multivariable 
control algorithms) can be used to select the most limiting. 
 One might ask: If the control objective is well known, 

t Figure 12. Tighter control of  
the process reduces the variability 
in distillate composition and in 
energy usage.

p Figure 13. Control variability increases energy costs.

p Figure 14. Reducing column operating pressure has a significant impact 
on energy costs.
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why is it not more widely implemented? There appear to be 
three primary reasons for this. 
 First, changing the pressure requires simultaneously 
changing the bottoms temperature setpoint appropriately to 
hold the product compositions at their targets. This is diffi-
cult to do manually — advanced composition control on the 
column is required.
 Second, changes in column pressure have other impacts 
on the plant, such as changes in the offgas rate (which 
affects the downstream gas processing), the amount of 
reboiler heating medium needed, and the hydraulic profile 
of the plant. In the case of partial condensation, pressure 
control can interact with the overhead receiver level. While 
these effects are real, their magnitude is sometimes exagger-
ated and cited as reasons for not making any changes. 
 Finally, plant personnel frequently do not agree on 
the amount of operating margin required to handle major 
disturbances. For instance, questions often arise about the 
dynamic response of an air-cooled condenser to a rainstorm 
and the ability of the overall control system to handle such 
conditions. A well-designed overall control system for the 
column can compensate for such disturbances. 
 Figure 14 shows the impact of reducing pressure on 
overall energy costs (at constant separation) for the case 
study considered in this article. Note that it is substantial. 
Even a reduction of 10 psi in the average operating pressure, 
which is less than a 7% change, would result in energy sav-
ings in excess of $240,000/yr. 
 Figure 14 also shows the impact of choosing a condenser 
medium with a lower temperature — for example, by add-
ing a supplemental cooling water condenser to an existing 
overhead system initially built with air coolers. The benefits 
would be expected to exceed $600,000/yr and the payout for 
such a project would be very rapid. 

 One concern is that lowering pressure could move the 
column closer to flooding, since the volumetric equivalent 
of a unit molar vapor flow will increase at lower pressure. 
However, the required total molar vapor flow at constant 
product composition decreases with the reduced energy 
input, and this decrease typically more than offsets the unit 
volumetric increase. A rigorous tray-to-tray simulation can 
quantify the expected tradeoffs and should be routinely used 
when making these decisions on operating columns.
 For packed columns, pressure changes can impact the 
mass-transfer coefficients, and these changes need to be 
evaluated as part of any energy-reduction evaluation.

Wrapping up
 An often-overlooked point is that if the controlled-
variable process data have a Gaussian distribution and the 
economic valuation function (as a function of the controlled 
variable) is linear, improved control will not change the eco-
nomic value if the mean of the observed controlled-variable 
process values is constant. In other words, a reduction in 
standard deviation has no direct economic impact. Changing 
the controlled-variable target in the direction of increased 
profitability is required. 
 That is not the case when the economic valuation is non-
linear. If it is a step function (as in the case study discussed 
here), then the optimum target that maximizes profitability 
depends on the control variance achieved. A reduction in the 
standard deviation of control can have a positive impact on 
the expected operating margin of the column.
 The optimum reflux depends on the energy price and the 
composition targets. If the energy price is high, the optimum 
reflux is the minimum that just allows the column to main-
tain both products in specification. However, if the energy 
price is lower, the optimum is actually unconstrained. It may 
be more profitable to operate the column at impurity levels 
less than the actual limit. 
 Reducing pressure can have a significant impact on over-
all energy costs at constant separation. The impact should 
be checked first by simulation, and then pressure-reduction 
control strategies can be implemented. 

DOuglaS C. WhiTE is the Director of Refining Industry Solutions, and a 
Senior Principal Consultant for the PlantWeb Solutions Group of Emerson 
Process Management (12603 Southwest Freeway, Suite 100, Stafford, TX 
77477; Phone: (713) 529-5980; Email: doug.white@emerson.com). Previ-
ously, he held senior management and technical positions with MDC 
Technology, Profitpoint Solutions, Aspen Technology, and Setpoint. In 
these positions, he was responsible for justifying, developing, and imple-
menting state-of-the-art, advanced energy automation and optimization 
systems in process plants around the world. White has published more 
than 50 technical papers on these subjects. He started his career with 
Caltex Petroleum Corp., in its Australian Refinery and Central Engineer-
ing Groups. He has a BS from the Univ. of Florida, an MS from California 
Institute of Technology, and an MA and PhD from Princeton Univ., all in 
chemical engineering. He is a long-time member of AIChE and received 
the Fuels and Petrochemical Div. Award in 2009.

CEP

Literature Cited 
1.	 U.S.	Dept.	of	Energy,	Office	of	Energy	Efficiency	and	Renew-

able	Energy, “Distillation Column Modeling Tools,” DOE, 
Washington, DC, http://www1.eere.energy.gov/manufacturing/
industries_technologies/chemicals/pdfs/distillation.pdf.

2.	 Blevins,	T.	L.,	et al., “Advanced Control Unleashed,” Interna-
tional Society for Automation (ISA), Research Triangle Park, NC 
(2003).

3.	 Luben,	W.,	ed., “Practical Distillation Control,” Van Nostrand 
Reinhold, New York, NY (1992).

4.	 Shinskey,	F.	G., “Distillation Control, McGraw-Hill, New York, 
NY (1984).

5.	 Shinskey,	F.	G., “Energy Conservation Through Control,” Aca-
demic Press, New York, NY (1978). 

6.	 Muske,	K.	R., “Estimating the Economic Benefit from Improved 
Process Control,” Ind. Eng. Chem. Res., 42 (20), pp. 4235–4544 
(2003). 

7.	 Stout,	T.	M.,	and	R.	P.	Cline, “Control System Justification,” 
Instrumentation Technology, 9 (23), pp. 51–58 (Sept. 1976).


