1.1 Preface

These “System Engineering Guidelines” apply to end user adoption of WirelessHART self-organizing mesh networks to automate process manufacturing. Following the guidelines will help users take full advantage of WirelessHART systems.

The document provides complete technical guidance for using WirelessHART devices and applications. The information presented applies to all IEC 62591 WirelessHART installations, independent of brand. Vendor-specific ‘value added’ features are not included.

PART I of the guideline addresses use of WirelessHART technology in project execution from the Appraise (conceptual design) stage through to the Pre FEED (Front End Engineering and Design), FEED, Execute and Operation stages. PART II describes the Field Network components that comprise WirelessHART networks.

The guidelines describe WirelessHART system functions and capabilities, networks and alternate modes of operation, and step-by-step procedures for system access and use. This document assumes the reader is proficient with HART® instrumentation. Therefore it focuses on the unique aspects of deploying WirelessHART systems. Unless stated otherwise, the reader should assume the project phases and steps are the same for HART and WirelessHART instrumentation.

This guideline summarizes the essential pre-requisites and general guidelines necessary for smooth execution of the project that contains WirelessHART Technology. The guidelines are applicable for small and large scale projects.

The technical guidelines are for use only by qualified personnel capable of observing the safety instructions from device manuals. The document is provided on an “as is” basis only and may be subject to future revisions without notice. The authors and contributors will not be responsible for any loss or damage arising out of or resulting from a defect, error or omission in this document or from personnel use or reliance on this document.

We want to hear from you

Your comments and suggestions will help us to improve the quality of system engineering guidelines. If you have any suggestions for improvements, comments, recommendations or a query, feel free to send feedback to a Wireless Specialist at WSEGSupport@Emerson.com.

1.1.1 Definitions and acronyms

The following definitions are used within this document.

Ancillary device

Any device that does not contain measuring sensor or output to the process for actuation.

Gateway

Enables communication between wireless field devices and host applications connected to an Ethernet, Serial, or other existing plant communications network; management of the wireless field network; and management of network security. Conceptually, the Gateway is the wireless version of marshaling panels and junction boxes. The Gateway functionality may also exist in native WirelessHART I/O cards with field radios.
Host system

Any system accepting data produced by the WirelessHART Field Network (WFN). This could be a DCS, PLC, RTU, Data Historian, asset management software, etc.

Join key

A 128 bit security key used to authenticate wireless field devices when joining the network, including encryption of the join request.

A common Join Key may be used among all devices on a given network, or each device may have a unique join key.

Note: When displayed in hexadecimal format via a browser or handheld, this results in a 32 character hexadecimal field.

Network ID

Each Gateway at a facility or location should be programmed with a unique Network ID. All authenticated wireless field devices with the same Network ID will communicate on the same network and Gateway.

Update rate

The user specified interval at which a wireless field device will detect a measurement and transmit the measurement to the Gateway (i.e. sample rate). The update rate has the largest impact on battery life due to the powering of the device sensor. Update rate is independent of radio transmissions required for mesh peer-to-peer communication, “hopping” via multiple devices to transmit a measurement back to the Gateway, and downstream communications from the host system to the wireless field device.

Wireless adapter

Enables an existing 4-20 mA, HART-enabled field device to become wireless. Adapters allow the existing 4-20 mA signal to operate simultaneously with the digital wireless signal.

Wireless field devices

Field device enabled with a WirelessHART radio and software or an existing installed HART-enabled field device with an attached WirelessHART adapter.

Wireless field network

A self-organized network of wireless field devices that automatically mitigate physical and RF obstacles in the process environment to provide necessary bandwidth for communicating process and device information in a secure and reliable way.

Wireless repeater

Any wireless field device used to strengthen a wireless field network (by adding additional communication paths) or expand the total area covered by a given mesh network.
1.1.2 Acronyms

The following acronyms are used within this document.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMS®</td>
<td>Asset Management System</td>
</tr>
<tr>
<td>CSSP</td>
<td>Control Systems Security Program</td>
</tr>
<tr>
<td>DCS</td>
<td>Distributed Control System</td>
</tr>
<tr>
<td>DD</td>
<td>Device Descriptor</td>
</tr>
<tr>
<td>DSSS</td>
<td>Direct-Sequence Spread Spectrum</td>
</tr>
<tr>
<td>FAT</td>
<td>Factory Acceptance Test</td>
</tr>
<tr>
<td>FEED</td>
<td>Front End Engineering and Design</td>
</tr>
<tr>
<td>HART</td>
<td>Highway Addressable Remote Transducer</td>
</tr>
<tr>
<td>HMI</td>
<td>Human Machine Interface</td>
</tr>
<tr>
<td>LOS</td>
<td>Line of Sight</td>
</tr>
<tr>
<td>NFPA</td>
<td>National Fire Protection Association</td>
</tr>
<tr>
<td>PDF</td>
<td>Process Flow Diagram</td>
</tr>
<tr>
<td>P & ID</td>
<td>Piping and Instrument Design</td>
</tr>
<tr>
<td>PLC</td>
<td>Programmable Logic Controller</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>RSSI</td>
<td>Received Signal Strength Indicator</td>
</tr>
<tr>
<td>SIT</td>
<td>Site Integration Test</td>
</tr>
<tr>
<td>SPI</td>
<td>Serial Peripheral Interface</td>
</tr>
<tr>
<td>SPL</td>
<td>Smart Plant Layout</td>
</tr>
<tr>
<td>TSMP</td>
<td>Time Synchronized Mesh Protocol</td>
</tr>
<tr>
<td>TSSI</td>
<td>Temporal Single-System Interpretation</td>
</tr>
<tr>
<td>UDF</td>
<td>User Defined Fields</td>
</tr>
<tr>
<td>WFN</td>
<td>WirelessHART Field Network</td>
</tr>
</tbody>
</table>
Contents

1.1 Preface ... ii
 1.1.1 Definitions and acronyms ... ii
 1.1.2 Acronyms ... iv

Section 1: Introduction
 1.1 Purpose .. 2
 1.2 Scope ... 2
 1.3 WirelessHART in project execution lifecycle 2

Section 2: Project Concepts
 2.1 Section overview .. 3
 2.2 Traditional approach ... 3
 2.3 WirelessHART approach: technology assessment 4

Section 3: Appraise
 3.1 Application ... 7
 3.2 Technology ... 8
 3.3 Operations .. 8
 3.4 Maintenance ... 8
 3.5 Appraise phase documentation 8
 3.5.1 Reference documents ... 9
 3.5.2 Deliverables from the philosophy document 9

Section 4: Pre-FEED
 4.1 Section overview .. 15
 4.1.1 WirelessHART for control and monitoring applications 16
 4.2 Cost benefit study .. 16
 4.3 Preliminary design basis ... 18
 4.4 Project references ... 19
 4.5 Pre-FEED documentation and tools 19
 4.5.1 Reference documents ... 19
 4.5.2 Deliverables .. 19

Section 5: Front End Engineering Design
 5.1 Section overview .. 19
 5.2 Scope definition of engineering execution 20
5.3 Environmental considerations ... 21
5.4 WirelessHART functional design requirements 21
 5.4.1 WirelessHART functional requirements 21
5.5 WirelessHART infrastructure requirements 21
5.6 Operational requirements .. 22
5.7 Design inputs documents review 22
5.8 Development of basis for design 22
 5.8.1 Design guidelines for WirelessHART 22
 5.8.2 Specifications ... 23
 5.8.3 Proof of concept test .. 23
5.9 Initial design review ... 24

Section 6: Execute

6.1 Section overview ... 25
6.2 WirelessHART Field Network – Design Engineering Overview 27
6.3 Design resources ... 27
6.4 Wireless device selection based on process measurement 27
 6.4.1 Process monitoring and control 28
 6.4.2 Equipment measurement ... 28
 6.4.3 Health and safety systems 28
 6.4.4 Environmental .. 28
6.5 Design criteria development ... 29
6.6 Identify candidate measurement points 29
6.7 Database field for wireless network assignment 29
6.8 Network design ... 30
 6.8.1 WirelessHART field network – design guidelines 31
6.9 Scoping ... 31
6.10 Detailed design specifications .. 35
 6.10.1 Designing .. 35
 6.10.2 Post installation considerations for control and high speed networks 39
 6.10.3 Minimizing downstream messages for wireless output control devices 40
6.11 Spare capacity and expansion ... 40
6.12 Fortifying .. 40
6.13 WirelessHART availability and redundancy 41
6.14 WirelessHART security ... 42
6.15 Alarm handling with WirelessHART devices 42
 6.15.1 Alarm recommendations for process plant 43
 6.15.2 Alarm priority ... 44
6.16 Data sheet parameters for WirelessHART transmitter 44
6.17 Tools and documentation ... 45
 6.17.1 Functional design specifications ... 45
 6.17.2 Instrument index/database ... 45
 6.17.3 Instrument data sheets .. 45
6.18 Testing ... 45
6.19 Factory Acceptance Test (FAT) .. 46
 6.19.1 Factory staging .. 46
 6.19.2 Assumptions ... 46
 6.19.3 FAT requirements ... 47
 6.19.4 FAT network configuration .. 47
 6.19.5 Wireless network troubleshooting .. 47
 6.19.6 FAT procedure .. 47
 6.19.7 FAT tools .. 48
 6.19.8 FAT documentation and reports .. 48
6.20 Site installation ... 48
6.21 Site installation plan ... 49
 6.21.1 Installation considerations .. 49
6.22 Network installations .. 49
6.23 Wireless connection test procedure .. 50
6.24 Network checkout procedure .. 51
6.25 Lightning protection ... 52
6.26 Device parameter configuration verification 53
6.27 Loop checkout/site integration tests .. 53
6.28 Bench simulation testing ... 53
6.29 Provision of spares .. 53
6.30 Removal of redundant equipment .. 54
6.31 Pre-commissioning ... 54
 6.31.1 Pre-commissioning requirements .. 54
 6.31.2 Defining WirelessHART pre-commissioning methods and acceptance 54
6.32 Site Acceptance Test (SAT) .. 55
6.33 Commissioning and start-up .. 55
 6.33.1 Wireless network integration with HMI and loop check 55
 6.33.2 Integrating host and field networks ... 55
 6.33.3 On-site wireless network reliability tests 56

Section 7: Operate

7.1 Section overview .. 57
Section 8: Project Management

8.1 Section overview ..59
8.2 WirelessHART project management overview59
 8.2.1 Customer requirements, compliance, and assumptions59
8.3 Work breakdown structure and cost estimation59
8.4 Subcontractor scope management60
8.5 Project scheduling ..60
8.6 Responsibility and skills matrix60
8.7 Managing project change requests61
8.8 Progress reviews and reporting61
8.9 Customer deliverables ..61
8.10 Training ..61
8.11 WirelessHART procurement and contract plan61
8.12 Material requisitions ...61
8.13 Documentation requirements in project execution62
 8.13.1 ISA documentation62

Section 9: Field Device Requirements

9.1 Support for WirelessHART functionality64
 9.1.1 Device diagnostics64
9.2 Mounting ...65
 9.2.1 Device mounting considerations65
 9.2.2 Antenna position ...65
 9.2.3 Mounting high gain remote antenna65
9.3 Power ...65
 9.3.1 Batteries ...65
 9.3.2 Energy harvesting ..66
 9.3.3 Wired power ..67
9.4 Security ..67
9.5 Approvals ..68
9.6 Accessibility ..68
9.7 Manufacturer documentation68
Section 10: Ancillary WirelessHART Devices

10.1 Section overview ... 69
10.2 Gateways .. 69
10.3 Wireless repeaters ... 70
10.4 WirelessHART adapters ... 70
10.5 WirelessHART handheld communicator 71

Section 11: Measurements and Choosing WirelessHART Devices

11.1 Use of WirelessHART® for multivariable process measurements 73
11.2 Use of WirelessHART in various process applications 74

Section 12: Host System Requirements

12.1 Use of standard protocols 75
12.2 Wireless host system ... 75
12.3 Host integration ... 77
12.4 Interoperability .. 78
12.5 Host system support for WirelessHART functionality 78
12.6 Device descriptions files (DD) 79
12.7 Configuration tools .. 79
12.8 Control system graphics ... 79
12.9 Node addressing and naming conventions 79
12.10 Alarms and alerts .. 80
12.11 Maintenance station and asset monitoring 80
12.12 Historian .. 80

Section 13: Documenting in Intergraph SPI 2009

13.1 Section overview .. 81
13.2 User defined fields (UDF) ... 81
13.3 Filtered views .. 82
13.4 Creating instrument types ... 83
13.5 Loop drawings .. 86
13.5.1 Loop drawings for WirelessHART adapters 87
13.5.2 Gateway cable block drawings 87
13.6 Drawings in smart plant layout (SPL) 88
13.7 Documenting security information 89

Appendix A: Example ISA Specifications
Appendix B: Design Resources

B.1 Section overview ...93
B.1.1 Network design tools ...93

Appendix C: Wireless Spectrum Governance

Appendix D: References
PART I

WirelessHART® Project Execution
Section 1 Introduction

WirelessHART is a global IEC-approved standard (IEC 62591) that specifies an interoperable self-organizing mesh technology in which field devices form wireless networks that dynamically mitigate obstacles in the process environment. The WirelessHART field networks (WFN) communicate data back to host systems securely and reliably, and can be used for both control and monitoring applications.

The similarities between traditional HART® and WirelessHART allow end users to leverage the training of existing process organizations when adopting WirelessHART. As a result, change is minimized. In addition, the reduced installed cost of WirelessHART extends the benefits of automation to end user applications that previously were out of reach since they could not justify the costs associated with typical wired capital projects.

The opportunity for long-term benefit makes it compelling for end users to expand process manufacturing project planning to evaluate the impact of WirelessHART on maintenance, safety, environment, and reliability. Additionally, by removing the physical constraints of wiring and power as well as reducing weight and space, wireless networks increase flexibility in project execution, providing solutions which can mitigate risk and improve project schedules.

1.1 Purpose

This IEC 62591 WirelessHART System Engineering Guideline applies to end user adoption of WirelessHART self-organizing mesh networks to automate process manufacturing projects of any size. The guidelines are intended to help users take full advantage of WirelessHART systems.

1.2 Scope

The guidelines apply to use of WirelessHART technology through all stages of project execution as well as throughout the lifecycle of facility operation.

Differences between HART and WirelessHART specifications and device types are highlighted.

1.3 WirelessHART in project execution lifecycle

Figure 1-1 illustrates a typical framework for project execution. It will be used as a basis for describing application of WirelessHART in each phase of a project. Although WirelessHART can be introduced at any phase, a strategic benefit is realized by its introduction during the early part of the project execution cycle.

Figure 1-1. Project Execution Lifecycle

<table>
<thead>
<tr>
<th>Appraise</th>
<th>PRE-FEED</th>
<th>Front End Engineering Design</th>
<th>Execute</th>
<th>Operate</th>
</tr>
</thead>
</table>

Introduction
Section 2 Project Concepts

2.1 Section overview

As described in this section, use of WirelessHART® over traditional technology reduces project risk during execution and provides greater flexibility and benefits to the plant during its life cycle.

2.2 Traditional approach

Traditional methods of wired control networks make use of conventional communications like 4-20 mA, HART®, FOUNDATION™ Fieldbus, PROFIBUS® and other bussed solutions. Planning and installation of these wired networks is complex due to inflexibility of wiring. Significant effort is required in the pre-FEED and FEED phases for planning long run cables including room for spares to accommodate changes during project execution. Beyond laying long run cables, wired system complexities include cable routing, connectors, and additional materials associated with wired technology that are greatly simplified with wireless.

Use of traditional technology also restricts measurement of parameters in locations inaccessible to cable trays and therefore wired connection. Such wired measurements could improve operations but are eliminated from the design process as being too costly to implement.

Since use of wired connections reduces the number of measurements and instruments during the initial execution phase, modifications may be needed to add some of these at a later stage. Increased spares would be needed to allow the expansion. In a typical project environment, frequent changes in I/O database, addition/deletion or reallocation of instruments, change in instrument types, delayed or late changes in package vendor data etc negatively impact project time and cost.

If instruments and therefore I/O points need to be added/changed/moved during operation, then lengthy procedures need to be followed for wired signals such as HSE, work permits, correct isolation procedures, and requisite cabling to connect the field instrument to the control system. These activities require coordination between multiple plant departments. Furthermore, routine inspection to ensure that the cable and associated infrastructure continue to operate trouble free, can be costly and time consuming and divert valuable resources away from operating the plant.
2.3 WirelessHART approach: technology assessment

WirelessHART technology may provide an opportunity to execute and build a more efficient plant compared to the traditional approach.

The project technical authority can decide whether to use wireless based on the following criteria:

- Economic advantages
- Application capability
- Operational savings
- Benefits of additional process insight from new measurements previously out of reach economically or physically - example: monitored safety showers
- Benefits of flexibility in project execution – example: ease of moving or adding I/O points during construction to cost effectively manage onsite changes

The high cost of traditional field wiring limits the number of points that are able to be connected in a project for process monitoring, control and safety applications. However, as the project proceeds and over the lifecycle of the plant, additional points may need to be added to resolve critical problems. Since WirelessHART does not require wires for communication or power, the lower costs enable inclusion of more process points during the project. The financial impediment in determining whether a point is automated or not is redefined.

Special consideration should be given to automation needs of new process plants. WirelessHART may provide significant advantages in enabling automation to ensure they meet stricter safety, environmental, reliability and performance criteria. Below are a few examples:

- Many new plants are designed to operate with fewer personnel. Upgrading simple gauges to wireless field devices can automate the manual collection of data from the field in order to increase worker productivity and reduce field trip exposure to hazardous environments.
- Many existing facilities have been modified in order to meet emerging environmental regulation. Real time monitoring of volatile organic compound release (VOC) from wireless monitoring of pressure safety valves and of conductivity and temperature of effluent waters can ensure environmental compliance.
- Wireless remote monitoring of safety showers and gas detectors during construction and operation can provide new levels of safety response.
- New environmental regulation often requires redundant monitoring systems on assets like tanks that were not required in the past. WirelessHART can provide a cost effective, reliable secondary communication and monitoring method.
- Wireless monitoring of steam traps and heat exchangers can provide real time information for minimizing plant energy consumption.

Cost effective field information accessible via WirelessHART field devices enables non-traditional end use of automation to be considered in the FEED and design phases. A designer should be aware of initiatives for safety, environmental protection, energy consumption, and reliability in addition to the traditional considerations for process automation. The WirelessHART architecture extends the benefits of automation to multiple plant initiatives without the need for multiple forms of I/O infrastructure.
Traditional wired architecture is limited in ability to mitigate risk of project execution. Innovative WirelessHART architecture provides greater flexibility with minimum engineering effort and greater savings in cost and time during any project phase, as compared to the traditional approach.

Active projects should optimize measurement and control technology by establishing design rules to define which points are suitable for WirelessHART versus traditional technology. These design rules will help to enable consistent and efficient engineering for subsequent project phases.
Section 3: Appraise

The Appraise phase (conceptual design) requires high level customer requirements or project constraints as input. In this phase a simple statement of requirements with identified constraints or objectives will suffice. Selection of wireless technology in this phase allows a simple generic design philosophy statement to be made on how the architecture can be used to meet the needs of both the business and the project. Figure 3-1 shows the inputs and outputs of the Appraise phase.

Figure 3-1. Conceptual Design Phase

![Diagram showing inputs and outputs of the Appraise phase]

During the Appraise phase it is likely that a summary of the technology and its application will be required by the project stakeholders in order for them to formulate a practical view of applicability to the project. Plant personnel engaged in the early phase of the project should also be part of this appraisal.

3.1 Application

WirelessHART® can be applied to a wide variety of process applications in all process industries spread over differing geographical terrain. Evaluate the following factors for potential WirelessHART application:

- Process monitoring and measurements which are remote and uneconomical to consider for wired monitoring
- Equipment health monitoring
- Environmental monitoring, energy management, regulatory compliance
- Extreme environmental conditions for wired installations (hot, wet and corrosive)
- Moving rails and test skids
- Rotating equipment
- Asset management, diagnostics and predictive maintenance
- Simple closed-loop control (when appropriate)
- API seal flush plans
- Secondary systems

3.2 Technology

Evaluate the following factors for benefit by application of *WirelessHART* technology:

- Minimizing the cost
- Ease of installation
- Reduced time for installation and commissioning
- Ease of maintenance
- Ease of expansion for future I/O points (scalability)

3.3 Operations

WirelessHART field networks can help optimize contiguous or remote process operations by collecting data in organized manner and enabling operators, shift supervisors, production/field management, and facilities engineers to collaborate. Delivery of the right information to the plant operations team helps them make the right decisions to improve plant throughput.

Evaluate *WirelessHART* operations for benefits in each of the following:

- Access to monitoring points which are normally unavailable to plant operators
- Increased safety by minimizing plant operator rounds in hazardous locations
- Better alarm handling and reporting
- Better insight by use of wireless transmitters for trending rather than gauges and switches

3.4 Maintenance

There are no special maintenance requirements for *WirelessHART* devices apart from changing the batteries. Diagnostic information provided to the Asset Management System alert technicians of the need for maintenance.

WirelessHART devices provide advantage for maintenance in hazardous areas. The batteries are intrinsically safe and power-limited, so they can be changed with the device locally without risk of causing a source of ignition.

3.5 Appraise phase documentation

The Appraise phase documentation presents conceptual design that is referenced to customer and project requirements, supported by economic analysis, and satisfies project imperatives.
3.5.1 Reference documents
- Customer requirement specification (customer statement of requirements)
- Project constraints

3.5.2 Deliverables from the philosophy document
- Conceptual design philosophy/architecture
- Economic Analysis of technology and solutions
- Project imperatives
Section 4 Pre-FEED

4.1 Section overview

In Pre-FEED, the requirements, philosophies and imperatives established in the Appraise phase are further elaborated. Deployment of WirelessHART® for identified applications can be explored and verified in further detail during this phase. Figure 4-1 shows the inputs and outputs of the Pre-FEED phase.

An integrated approach should be used for incorporating wireless into a project. Wireless should be merged with wired technology in the project procedures. It is essential to use the right field device technology for the right application. New end user communities may be added as the cost advantages of wireless expand applications during the FEED process.
4.1.1 *WirelessHART for control and monitoring applications*

WirelessHART is designed for both control and monitoring applications. Most current use cases emphasize monitoring applications due to conservative adoption of new technology in the process manufacturing industry. The use of wireless control applications is continuing to evolve with the introduction of discrete output devices for performing simple control functions. The Table 4-1 provides a high level summary for selection of the right protocol when factoring in loop criticality; cost to engineer and implement; and location of field devices relative to main process areas and host systems.

Table 4-1. Selecting the Right Protocol

<table>
<thead>
<tr>
<th></th>
<th>Safety systems</th>
<th>Critical control</th>
<th>On-off control</th>
<th>In-plant monitoring</th>
<th>Remote monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fieldbus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WirelessHART</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend

<table>
<thead>
<tr>
<th>Based on technical and/or cost considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most appropriate solution</td>
</tr>
<tr>
<td>Appropriate in some cases</td>
</tr>
<tr>
<td>Lease effective solution</td>
</tr>
</tbody>
</table>

Table 4-2 shows the available technology solution for different signal types.

Table 4-2. Selecting Signal Types with the Right Protocol

<table>
<thead>
<tr>
<th></th>
<th>Analog inputs</th>
<th>Analog output</th>
<th>Digital inputs</th>
<th>Digital outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Fieldbus</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>WirelessHART</td>
<td>✓</td>
<td>N/A</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

4.2 *Cost benefit study*

WirelessHART and wired solutions need to be evaluated during the Pre-FEED phase for comparison from a cost and time perspective. Furthermore, assessments on the benefits to schedule improvement (by phase) and of change management should be an input to this cost benefit study.

The following factors can be considered for this comparison:

- Main junction box requirements
- Secondary junction box requirements
- Main cable tray requirements
- Secondary cable tray requirements
- Multi-core cable requirements
- Mechanical and civil work for cable routing
- Power supply in system cabinets
- System cabinet requirements
- Marshalling cabinets
- 3D modeling review for cable tray routing, cable tray engineering, and location of junction box
- Cost of change request management
- Time and efforts for installing cable trays and cables
- Power consumption requirement
- Space requirements
- Material weight reduction
- System design time requirements
- Material consideration based on area classification and protection concept

In addition to the above criteria, accommodating changes is cheaper and more efficient with WirelessHART during any project phase. Typical case studies for cost, time, power, space and weight savings are shown in Figure 4-2 and Figure 4-3. These case studies should consider the criteria listed above.

Figure 4-2. Case Study for Time and Cost Savings
4.3 Preliminary design basis

Determine a preliminary design basis using the Customer Requirement Specification updated in the Appraise phase along with the preliminary conceptual design documents available from Appraise like site plan/layout, P&IDs, instrument index etc. This includes the quantity of WirelessHART instruments, Gateways and repeaters needed to create a pervasive sensing network. Assumptions on the basis of experience for similar plants/units can be made in absence of requisite inputs.

Considering requirements of WirelessHART for indoor, outdoor and remote locations, develop a preliminary network topology for the Wireless Field Network.

Develop a suitable interface solution for connection of the multiple Wireless Field Networks to the host system and asset management system.

Verify spectrum approvals for the end-user and any intermediary locations. Refer to Appendix A: Example ISA Specifications for more details.
4.4 Project references

Previous projects operating with WirelessHART are a rich source of information and reference for new planned WirelessHART implementation. Look towards these references as the first line of help to overcome specific issues encountered in new installations.

4.5 Pre-FEED documentation and tools

Documentation from the Pre-FEED phase records use of conceptual design reference inputs to develop high level functional design deliverables.

4.5.1 Reference documents

- Initial plot plan
- Initial 3D layout drawings
- Initial P&ID
- Instrument index
- Customer specification documents
- Proposal documents for cost estimates

4.5.2 Deliverables

- Initial wireless field network system architecture
- Measurement signal types
- Bill of quantity
Section 5 Front End Engineering Design

5.1 Section overview

Front End Engineering Design (FEED) is an important stage where key deliverables exist for wireless including cost estimation, design guidelines, and specifications. Collaborative efforts put in by all stakeholders during FEED, will help in capturing all project specific requirements and avoiding significant changes during the Execution phase.

The following factors can be evaluated during the FEED phase for WirelessHART® deployment in the project.

- Environmental considerations
- WirelessHART functional design requirements
- Scope definition of engineering execution
- WirelessHART infrastructure requirements
- Operational requirements
- Design inputs documents review
- Development of basis for design
- Risk assessment and initial design philosophy review

Figure 5-1 shows the inputs and outputs of the FEED phase.

Figure 5-1. FEED Phase

Templates Available from Emerson
5.2 Scope definition of engineering execution

Stakeholder meetings are important to ensure all disciplines understand the scope of Wireless applications. Agenda items should include the following:

- Review potential benefits in key areas of the work structure
- Put in place appropriate training and strategy to achieve potential benefits.
- Clearly distribute project work to optimize dependencies within the project team so that schedule efficiencies can be achieved.
- Identify In-house wireless network requirements to define the scope of Integration of WFN and WPN network.
- Clearly define wireless communication network availability, redundancy, *WirelessHART* equipment supply, installation, configuration and commissioning site work activities, and spare requirements scope.

Define and include in the scope: overall wireless network architecture design, wireless device location, minimum distance and coverage between access points, network coverage and performance requirements.

Identify and include in the scope: supplementary wireless network devices such as *WirelessHART* handheld communicator, Mobile worker supply.

Determine the field device types and *WirelessHART* signal types for project implementation, including consideration of the following signal and device types (refer to Emerson™ Process Management literature for the most up to date measurement types and innovations).

- Pressure
- Temperature
- Flow
- Level
- Tuning fork level
- Conductivity
- pH
- Corrosion
- Tank gauging
- Guided wave radar
- Discrete position monitoring
- Discrete inputs
- Discrete outputs
- Acoustic (steam trap and PRV monitoring)
- Vibration
- Flame detection
5.3 **Environmental considerations**

Check for compliance with hazardous area classification requirements, temperature class, and ambient temperature of plant.

Ensure compliance with regional and country specific RF frequency usage norms.

5.4 **WirelessHART functional design requirements**

During the initial stage of FEED, translate owner-operator’s functional requirements into a network infrastructure, device characteristics, host interfaces, and applications. Document these in the design specification; also include boundary conditions (i.e. all monitoring points on this project will be wireless) associated with WirelessHART applications.

5.4.1 **WirelessHART functional requirements**

Develop the WirelessHART design, including the following:

- Network environment and area classification
- WirelessHART system architecture
- Operational requirements
- Data requirements
- Interfaces
- Testing
- Spares consideration
- Documentation requirements
- Training
- WirelessHART network Security, reliability and interoperability requirements

5.5 **WirelessHART infrastructure requirements**

Conduct plot plan reviews and determine the infrastructure requirements for the following:

- System architecture
- Wireless
- Field network design including IEC62591 WirelessHART Field Instruments
- Automation
- Host system interface
- Process control network interface
- Asset management system diagnostics including those for field device and the field network configuration
5.6 Operational requirements

Determine operational requirements for the following:
- Process monitoring and signal types
- Device diagnostics
- Loop response time
- DCS HMI
- Redundancy
- WirelessHART network components
- Reduction in field inspections of physical wired infrastructure (IECC60079)
- Elimination/reduction of operator rounds

5.7 Design inputs documents review

Collect initial design documents that describe project requirements including plot plans, equipment layout plans, preliminary instrument index, and three-dimensional layout drawings.

Project team shall make sure inputs are sufficient to define the project initial design philosophy. If documentation is inadequate then project team needs to seek technical clarification from the facility owner-operator.

5.8 Development of basis for design

5.8.1 Design guidelines for WirelessHART

During the FEED process, all project stakeholders should be made aware of the capability and benefits of WirelessHART so that design engineers can identify potential application candidates. The project team should develop a wireless design and circulate to all project stakeholders.

For example, the process design engineer can use a set of criteria as shown in Table 5-1 to identify wireless application candidates.

<table>
<thead>
<tr>
<th>Safety systems</th>
<th>Critical control</th>
<th>On-off control</th>
<th>In-plant Monitoring</th>
<th>Remote Monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>WirelessHART</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5-1. Example Criteria of Wireless Application Candidates

<table>
<thead>
<tr>
<th>Legend</th>
<th>Based on technical and/or cost considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Based on technical and/or cost considerations</td>
</tr>
<tr>
<td>Most appropriate solution</td>
<td></td>
</tr>
<tr>
<td>Appropriate in some cases</td>
<td></td>
</tr>
<tr>
<td>Lease effective solution</td>
<td></td>
</tr>
</tbody>
</table>
Ideally, WirelessHART application candidates are identified early in the FEED process design phase. This could be during development of the Process Flow Diagram (PFD) or Piping and Instrument Design (P&ID) Diagram. However, if an early decision is not taken, this should not preclude the use of the technology later in the project.

The basis for WirelessHART design should be shared among all stakeholders so that other technical design authorities can identify potential wireless applications and benefit from the installed wireless infrastructure. Furthermore, this process ensures consistent implementation across all design authorities and allows for an efficient decision process for use of wireless technology.

Include the following steps when developing the WirelessHART design guidelines:

- Determine which categories of points are eligible to be wireless: safety, control, monitoring, and local indication.
- Determine if new users are eligible for automation: process efficiency, maintenance, reliability, asset protection, health/safety/environmental, and energy management.
- Determine percent spares required and necessary spare capacity.
- Factor in distance considerations between Gateways and wireless field devices. Distance considerations are elaborated on in Section 0, Designing.
- Determine whether WirelessHART field network backhaul is required.

5.8.2 Specifications

Specifications for WirelessHART field devices are nearly the same as for wired HART® devices. See Appendix B: Design Resources for key differences.

<table>
<thead>
<tr>
<th>Specification Field</th>
<th>Typical HART Specification</th>
<th>Typical WirelessHART Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output signal</td>
<td>4-20 mA HART</td>
<td>IEC 62591 WirelessHART</td>
</tr>
<tr>
<td>Power supply</td>
<td>24V DC Loop Powered</td>
<td>Intrinsically Safe Battery</td>
</tr>
<tr>
<td>Update rate</td>
<td>1 second</td>
<td>1 second to 60 minutes</td>
</tr>
<tr>
<td>Protection/enclosure</td>
<td>Explosion Proof</td>
<td>Intrinsically Safe</td>
</tr>
</tbody>
</table>

IEC 62591 WirelessHART is an international standard for wireless process automation devices. Devices that comply with the standard include advanced provisions for security, protocol, and other features essential to wireless networks and therefore specification of such attributes covered in the standard are not necessary.

Appendix A: Example ISA Specifications provides example specifications for a WirelessHART Gateway and wireless adapter that can be generically specified as transceivers/receivers.

5.8.3 Proof of concept test

WirelessHART is well established in a comprehensive range of process plants and environments. On occasion it may be necessary to conduct a proof of concept test to familiarize stakeholders with the capability and applications of the technology; this can be done in a workshop setting.
5.9 Initial design review

Upon completion of site plot plan review, gather the report results from various WirelessHART tools, proof of concepts and compliance to customer requirements, and discuss these with all stakeholders. Also discuss any requirement changes, deviations or assumptions with the stakeholders. Since WirelessHART is extremely flexible it is easy to incorporate necessary architecture changes.
Section 6 Execute

Section overview ... page 25
WirelessHART Field Network – Design Engineering Overview page 27
Design resources ... page 27
Wireless device selection based on process measurement page 27
Design criteria development .. page 29
Identify candidate measurement points ... page 29
Database field for wireless network assignment page 29
Network design .. page 30
Scoping ... page 31
Detailed design specifications ... page 35
Spare capacity and expansion .. page 40
Fortifying .. page 40
WirelessHART availability and redundancy .. page 41
WirelessHART security ... page 42
Alarm handling with WirelessHART devices .. page 42
Data sheet parameters for WirelessHART transmitter page 44
Tools and documentation ... page 45
Testing ... page 45
Factory Acceptance Test (FAT) .. page 46
Site installation ... page 48
Site installation plan .. page 49
Network installations .. page 49
Wireless connection test procedure .. page 50
Network checkout procedure .. page 51
Lightning protection .. page 52
Device parameter configuration verification .. page 53
Loop checkout/site integration tests .. page 53
Bench simulation testing ... page 53
Provision of spares .. page 53
Removal of redundant equipment ... page 54
Pre-commissioning .. page 54
Site Acceptance Test (SAT) .. page 55
Commissioning and start-up ... page 55

6.1 Section overview

During the Execute phase (Detailed Design and Testing) of a project, the engineer must account for WirelessHART® devices per the guidelines established in the FEED, add wireless specific fields to the project database, and follow wireless field network design procedures to ensure best practices are implemented.

This section addresses the following aspects of Execute Detail design phase.

- Design resources
Design guidelines

Wireless field networks design description
- Key components of the wireless field network solution
- Wireless devices and Gateway
- Wireless device selection criteria and data sheets

Field network deployment
- Project environmental considerations, intrinsic safety requirements
- Equipment environmental specification
- Radio regulatory compliance
- Plant areas and candidate areas for further wireless deployments

Host system interface
- Host/DCS components and architecture
- Network identification
- Asset management software interface

Third party interface

Wireless field network infrastructure
- Typical architecture,
- Equipment location
- Power specification and power distribution philosophy
- Cable specifications and types
- Field data backhaul philosophy and backhaul specification

Design philosophy deployment
- Topology, wireless field network control philosophy
- Monitoring, closed loop control
- Module design and scan rates
- Alarm and status Information

Figure 6-1 shows the inputs and outputs of the Execute-Detailed Design phase.
6.2 **WirelessHART Field Network – Design Engineering Overview**

Follow these three key steps for designing a network:

1. **Scope** – Decide if you need to reference wireless field networks by process unit or subsection of a process unit. Factors include:
 - Number of devices in the process unit
 - Update rates need for wireless devices
 - Capacity of the Gateway

2. **Design** – Apply design rules to ensure optimum connectivity.

3. **Fortify** – Identify and correct any potential weaknesses in the network design.

The three basic steps apply for all process environments in all industries, although the context may vary slightly depending on the physical structure of the process environment. The basic steps also apply regardless of the vendor of the WirelessHART devices. Since WirelessHART networks become stronger as more devices are added, the Scope step is the most critical for high density applications.

WirelessHART is designed for both control and monitoring applications. Refer to Section 2: Project Concepts for detailed recommendations on using wireless control systems and devices.

In general, control with WirelessHART is appropriate for most cases of open loop control that require manual interaction with the process and some cases of supervisory control for set point manipulation and process optimization. Applications for closed loop regulatory control of a critical loop may be evaluated case by case.

6.3 **Design resources**

See the Design Resources Appendix for more information. Contact your respective WirelessHART vendor for automated design tools to aid:

- Wireless network planning
- Network design
- Gateway capacity planning
- Device type availability and battery life estimation

6.4 **Wireless device selection based on process measurement**

WirelessHART devices are available for various process measurement applications including those described below.
6.4.1 Process monitoring and control
- Hard to reach locations
- Process efficiency calculations
- Better insight into the process
- Ad-hoc measurements
- Additional measurements from multivariable devices
- Calculated variables in devices

6.4.2 Equipment measurement
- Vibration
- Corrosion
- Oil pressure
- Air flow

6.4.3 Health and safety systems
- Gas Detectors
- Analyzers

6.4.4 Environmental
- Steam traps (energy usage)
- Water/discharge treatment
- Flow
- pH
- Stack emissions
- Relief valves

WirelessHART devices can be deployed in harsh environments and hazardous areas. Table 6-1 lists examples of WirelessHART application deployment. For a comprehensive list of applications, refer to the Wireless Application Guide available through your local Emerson project specialist.

Table 6-1. WirelessHART Applications

<table>
<thead>
<tr>
<th>Steam Cracker</th>
<th>Diesel and Kerosene Production Monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treated Water Usage</td>
<td>Rotating Calciner</td>
</tr>
<tr>
<td>Filter Condition</td>
<td>Pipeline Leak Detection</td>
</tr>
<tr>
<td>Pipeline System</td>
<td>Compressor Emissions Compliance</td>
</tr>
<tr>
<td>Remote Storage Tanks</td>
<td>Rotating Roaster</td>
</tr>
<tr>
<td>Cold Box</td>
<td>Boiler and Heater Gas Flow</td>
</tr>
<tr>
<td>Steam Distribution Lines</td>
<td>Bitumen Tank Farm</td>
</tr>
<tr>
<td>Rotating Alumina Kiln</td>
<td>Gas & Diesel Tank Inventory Management</td>
</tr>
<tr>
<td>Power Industry Applications</td>
<td>NOx Emissions</td>
</tr>
<tr>
<td>Storage Tank Monitoring System</td>
<td>Critical Oil Movement Tank Gauging</td>
</tr>
<tr>
<td>Pipelines</td>
<td>Sugar Bin Motor Monitoring</td>
</tr>
<tr>
<td>Fuel Supply Systems</td>
<td>Gas Storage</td>
</tr>
<tr>
<td>Remote Tanks</td>
<td>Steam Trap and PRV Monitoring</td>
</tr>
</tbody>
</table>
6.5 **Design criteria development**

Each wireless field network should be scoped to a single process unit.

Minimize the number of hops to the Gateway in order to reduce latency. A minimum of five wireless instruments should be within effective range of the Smart Wireless Gateway.

A mesh network gets its reliability from multiple communication pathways. Ensuring each device has multiple neighbors within range will result in the most reliable network. Each device in the network should have a minimum of three devices within range to provide a potential communication path.

Include 25 percent of each network’s wireless instruments within effective range of the Smart Wireless Gateway. Other enhancing modifications include creating a higher percentage of devices, up to 35 percent or more, within effective range of the Gateway. This clusters more devices around the Gateway and ensures fewer hops and more bandwidth available to WirelessHART devices with fast scan rates.

6.6 **Identify candidate measurement points**

Using the wireless guidelines established in the FEED, the design engineer should segregate all points in the project database to identify the eligible wireless IO points. For example, if monitoring is deemed to be an eligible category, these points should be sorted from the control and other points. Afterwards, further requirements of the field devices can be applied. For example, some control and monitoring points may be excluded from wireless eligibility because the required update rate exceeds either the desired life of the battery or the capability of the field device.

Typical control applications may require 1 second or faster update rates. There is a trade-off for wireless devices between update rate and battery life; the faster the update rate, the lower the battery life will be. It is recommended that the update rate of the measurements shall be three times faster than the process time constant. As an example, a typical update rate for measuring temperature changes with a sensor inside a thermowell can be 16 seconds or longer given how much time is required for heat to penetrate the thermowell.

6.7 **Database field for wireless network assignment**

Each wireless field device must be assigned to a Gateway that manages a specific wireless field network.

Each Gateway will manage its own wireless field network and can have an assigned HART Tag like any HART device. Each wireless field network in a plant must have a unique Network ID to prevent devices from attempting to join the wrong network. In order to ensure the desired security level is achieved, a decision must be made whether to use a common join key for all devices in a given field network, or unique join keys for each field device. The combination of these two parameters provides identification and authentication down to the field device.

Table 6-2 presents definitions of network Parameters when using a common Join Key, including examples of a Gateway HART Tag, Network ID and Common Device Join Key.
The Join Key is the most important parameter for implementing security. Users can know the Gateway HART tag and the Network ID for the network that the Gateway manages, but a wireless field device cannot join the network without a Join Key. The design engineer should be sensitive to the security policies of the design firm and the security policies of the future owner-operator and, as a minimum, treat the Join Key with the same sensitivities as a password for a server to a DCS or database. For this reason, storing the join key as a field in a design database is not prudent.

Fields should be added to the project database to indicate that a field device is wireless and to describe its association with a Gateway by using the Gateway HART tag or other labeling convention. Parameters required to be managed confidentially should be controlled in a secure means in alignment with established security policies. Staff members with IT security or process security responsibilities are well suited to provide consultation into the handling of sensitive information.

Finally, the design engineer should be aware of available Wireless HART devices. Many come with multiple inputs, enabling fewer devices to satisfy the total number of points in a project. For example, several vendors have a multiplexed Wireless HART temperature device that reduces costs.

6.8 Network design

Once wireless candidate devices have been identified in the instrument database, the field network design can begin.

Ideally wireless points should be organized by process unit and by subsection of process unit as typically depicted in the master drawing. This information can be used to determine the number of Gateways required. Additional Gateways can be added to ensure spare I/O capacity per guidelines or other project requirements. From here, the Gateways should be logically distributed throughout the process unit like junction boxes. Wireless field devices should be assigned to the closest Gateway, or to the Gateway that is assigned to the process unit adjacent to the unit where the field devices reside. Once this is complete, network design best practices should be checked to ensure reliability of the network. This will be covered in detail in the Wireless HART Field Network Design Guidelines.

Drawings should be created per existing standards. In most instances, a wireless field device is treated identically to a wired HART device. Most drawings do not indicate wires or the type of communication protocol, thus nothing unique needs to be done for wireless field devices.

Section 10: Ancillary Wireless HART Devices provides examples unique to Wireless HART such as Gateways and wireless adapters. Fundamentally, it will be up to the design engineer to adhere to or provide a consistent convention that meets the needs of the contractor and the owner-operator as is true for wired HART projects.

Existing HMI (human-machine interface) design guidelines for integration also apply to wireless with no change required since data points connected from the Gateway into the host system are managed like any other source of data.
6.8.1 WirelessHART field network – design guidelines

The WirelessHART network specification enables a reliable, secure, and scalable architecture. Contrary to legacy systems and point-to-point wireless networks, WirelessHART is a truly scalable automation technology that gets more robust as more devices are added to an existing network. Design guidelines support the deployment of small networks with less than 10 WirelessHART devices for monitoring and control, as well as installations supporting thousands of devices.

This section includes recommendations to support the long-term, sustainable adoption of wireless applications including WirelessHART as well as Wi-Fi, Wi-Max, and more.

The best practices for network design are applicable for networks operating with a mix of WirelessHART devices for monitoring and control with update rates from 1 second to 3600 seconds (60 minutes). A site survey is not normally required or even possible in the case of a Greenfield site. For an overview on spectrum usage refer to Appendix C: Wireless Spectrum Governance.

6.9 Scoping

The same design rules that govern the segmentation of wired HART networks apply to WirelessHART. From a very simple perspective, all process facilities have an architecture that organizes the infrastructure as well as the automation and the people. WirelessHART not only self-organizes to the process environment, but also to this inherent organization of the process facility. For example, the process facility shown in Figure 6-2 is organized into seven process units separated by roads.

Figure 6-2. Example Process Facility
If the process facility is not an outdoor production environment, there is still a natural organization that should be used for scoping networks. For example, power plants and biopharmaceutical manufacturing facilities are typically completely enclosed with multiple floors. One option is to scope WirelessHART field networks to a floor. If there are seven floors, then there are potentially seven WirelessHART networks.

The benefits of scoping a WirelessHART field network to a process unit are:

- Aligns the data flow from the WirelessHART devices through the Gateway to the host system with existing data architecture.
- Aligns WirelessHART tagging convention with wired HART tagging convention.
- Aligns WirelessHART documentation practices with the process unit and support device location. If you know device A is on Network A and in process unit A, then one should not look in process unit B to find device A.
- Aligns work processes of managing WirelessHART device lifecycles with wired HART lifecycles including organizational responsibilities.
- Sets reasonable expectations for range between WirelessHART devices. Most process units do not have a footprint greater than a few hundred feet (<0.2km) by a few hundred feet (<0.2km).

While scoping the number of networks and Gateway placement, the design engineer should factor in considerations for Gateway capacity and spare capacity. At a minimum, each process unit should have its own Gateway with spare capacity for problem solving in real time. If a project is small and application focused and total numbers of I/O points are less than the capacity of Gateways, then typically a single Gateway is required. If the project is large or has wireless field devices with update rates faster than four seconds, use the following process to determine the total number of Gateways and modify the scope of a network.

1. Filter the Instrument Index List by process unit and determine how many I/O points are in each process unit that are wireless so that the WirelessHART networks can be segmented by process unit.
 - For example, out of 700 total I/O points, let’s assume process unit A has 154 wireless points requiring 154 WirelessHART devices. We need to determine how many Gateways are needed.

2. Identify the necessary update rate of each WirelessHART device to meet the specifications of the application as well as battery life.
 - Typical WirelessHART devices can update from once per second to once per hour.
 - The update rate should be 3-4 times faster than the time constant of the process for monitoring and open loop control applications.
 - The update rate should be 4-10 times faster than the time constant of the process for regulatory closed loop control and some types of supervisory control.

Note

Some WirelessHART devices support more than one wireless point and so there may be instances when fewer devices are required to satisfy the number of measurement points. A key example is a WirelessHART temperature transmitter where two or more temperature elements are used as inputs. Networks can support a mix of device types and update rates. The method outlined here is a simple method that determines max capacity with very limited design information.
The faster the update rate, the shorter the battery life. Use an update rate that meets the needs of the application, but does not oversample in order to maximize battery life.

- Update rates faster than four seconds can impact the total number of wireless devices that can be put on a Gateway. Consult the specification of the Gateway vendor for additional constraints and consultation.

3. Determine the capacity of the Gateway determined by the maximum update rate to be used in the network. Be conservative and assume all devices are operating at the same, fastest update rate network for the purpose of estimation. Example output: 100 WirelessHART devices per Gateway if all devices are updating every eight seconds or slower and the Gateway can support 100 devices at eight seconds.

Note
Some Gateway vendors have advanced capacity planners that can provide detailed capacity estimate based on the required updates of individual update rates. WirelessHART networks can support a mix of device types and update rates. The method outlined here is a simple method that determines max capacity with very limited design information.

4. Determine and apply any guidelines on spare capacity. If the design rules for the project state that I/O components should have 40% spare capacity, then note this value for the following calculation.

5. Use the following calculation to determine the number of Gateways:

 \[\text{# gateways} = \text{ROUNDUP} \left(\frac{\text{Total WirelessHART devices in process unit}}{\text{gateway capacity} \times (1 - \text{spare capacity requirement})} \right) \]

 For the example above, three Gateways are needed.

 \[\text{#gateways} = \text{ROUNDUP} \left(\frac{156}{100 \times (1 - 0.40)} \right) = 3 \]

 This formula can be entered into Microsoft® Excel®.

6. Scope the number of required Gateways into subsections of the process unit. If more than one Gateway is needed per process unit, then the design engineer should segment the networks such that the Gateways are distributed in the field like marshaling panels and junction boxes. In Figure 6-3, the master drawing, the process unit has 16 subsections labeled L-2 through L-17 that should be logically segmented for coverage by Gateways. Not every Gateway needs to have the same number of wireless points. If redundant Gateways are to be used, then double the number of Gateways based on the output from the above formula.
This example shows three WirelessHART Gateways supporting three WirelessHART networks in the same process. This is analogous to having three FOUNDATION™ Fieldbus segments in the same process unit. In this example, the process unit subsections were grouped horizontally instead of vertically to minimize the distance of the process unit. A key consideration is that the Gateways, regardless of manufacturer should always be in the process space for which they supply I/O capacity. Figure 6-4 shows an image of what not to do.
Do not place all Gateways in the same location just because connecting into the host system is convenient. The next section on network design will show that this is inefficient and can lead to unreliable networks in the long term. The Gateway should be centralized to the field network to maximize the number of connections to wireless devices.

WirelessHART networks can be logically aligned with existing documentation and automation engineering practices following this procedure.

Key things to remember:

- Scoping is the most important design rule. Use it to ensure wireless capacity, long term scalability, high reliability, and alignment of WirelessHART devices and management with existing process facility, organization, and work practices.
- Every WirelessHART Gateway in a facility must have a unique Network ID to properly segment the WirelessHART field networks.
- The output from the scoping phase should be a scaled drawing showing the relative locations of assets and processes to be automated and potential integration points for the WirelessHART Gateways.

6.10 Detailed design specifications

Upon completion of site study report review, prepare detailed design specifications in accordance with the control system requirements. Detailed design covers the following:

- Overall wireless mesh architecture including the detailed network infrastructure
- WirelessHART devices and network hardware and software specifications
- Network integration method
- Network security specification
- Network monitoring tools
- Documentation requirements

6.10.1 Designing Effective device range

The following design rules are intended to be very conservative and are based on real-world deployments of WirelessHART field networks. The effective range of a device is the typical linear distance between WirelessHART field devices when in the presence of process infrastructure. Typically, if WirelessHART devices have no obstructions between them, have clear line of sight (LOS), and are mounted at least 6 feet (2 meters) above the ground, then the effective range with 10 mW/10 dBi of power is approximately 750 feet (228 m). Obstructions decrease the effective range. Most process environments have high concentrations of metal that reflect RF signals in a non-predictable manner bouncing the signal off of the metal of the surrounding environment. The path of an RF signal could easily be 750 feet (230m) even though the neighboring device separation is only 100 feet (31 m) away. Below are three basic classifications for effective range in the process environment.

- Heavy Obstruction – 100 ft. (30 m). This is the typical heavy density plant environment; where a truck or equipment cannot be driven through.
Medium Obstruction – 250 ft (76 m). This is the less light process areas where lots of space exists between equipment and infrastructure.

Light Obstruction – 500 ft (152 m). Typical of tank farms. Despite tanks being big obstructions themselves, lots of space between and above makes for good RF propagation.

Clear Line of Site – 750 ft (228 m). The antenna for the device is mounted above obstructions and the angle of the terrain change is less than 5 degrees. Some WirelessHART vendors provide options and techniques for obtaining even further distances for long distance applications.

These values are practical guidelines and are subject to change in different types of process environments. Conditions that significantly reduce effective range are:

- Mounting field devices close to the ground, below ground, or under water. The RF signal is absorbed and does not propagate.
- Mounting field devices inside or outside of a building relative to the main network and Gateway. RF signals do not propagate well through concrete, wood, etc. Typically, if there are wireless devices nearby on the other side of the enclosure, no special design rules are needed. If there is a high volume of WirelessHART devices isolated from the network by an enclosure, consider scoping a network inside of the facility. Small, fiberglass instrument and device enclosures often deployed in very dirty or harsh environments show minimal impact on propagation of RF signal and can be used. Large Hoffman-style metal enclosures will prevent RF signals and are not recommended without additional engineering considerations.

The low power nature of WirelessHART devices allow operation for several years without replacing a battery module, but also limit the output power of the radio and maximum range. Because WirelessHART devices can communicate through each other to send messages to the Gateway, the self-organizing mesh naturally extends the range beyond that of its own radio. For example, a wireless device may be several hundred feet or meters away from the Gateway, but power efficient “hops” through neighboring devices closer to the Gateway ensure reliable, extended range.

The effective range is used to test the validity of network design by applying the following design rules.

There are four fundamental, recommended network design rules.

1. “Rule of Five Minimum” - Every WirelessHART network should have a minimum of five WirelessHART devices within effective range of the Gateway. Networks will work properly with less than five WirelessHART devices but will not benefit from the intrinsic redundancy of a self-organizing mesh network and may require repeaters. In a well formed, well designed network, new WirelessHART devices can be added to the interior or perimeter of the network without affecting operation or extensive consideration for design. Figure 6-5 is a simple design example. The network has been properly scoped to a process unit and four WirelessHART devices have been placed with a Gateway on a scaled process drawing. The red circle around the Gateway represents the effective range of the Gateway. We see in this example, the “Rule of Five Minimum” is broken in that there are only four devices within effective range of the Gateway. This network will likely perform to specification, but it is optimal to fortify for long term scalability and reliability by adding more devices.
2. "Rule of Three" – Every WirelessHART device should have a minimum of three neighbors within effective range. This ensures there will be at least two connections and the potential for connections to change with time. Continuing on from the previous example, we fortified the network by adding another field device within the effective range of the Gateway and added another device as another measurement point. Now, as shown in Figure 6-6, the red circle represents the effective range of the WirelessHART device that does not have three neighbors. For reliability, it is essential for every WirelessHART to have two paths during operation to ensure a path of redundancy and diversity. The "Rule of Three" when designing ensures concentration of devices.
3. **“Rule of Percentages”**— Every WirelessHART network with greater than five devices should have a minimum of 25% of devices within effective range of the Gateway to ensure proper bandwidth and eliminate pinch points. WirelessHART networks can work with as little as 10%, and actual implementation may yield less than 25%, but experience shows this is a practical number. Example, a 100 device network implies 25 within effective range of the Gateway.

- Networks with greater than 20% of wireless devices with update rates faster than two seconds should increase the percentage of devices within effective range of the Gateway from 25% to 50%.

4. **“Rule of Maximum Distance”**— Wireless devices with update rates faster than two seconds should be within two times the effective range of wireless devices from the Gateway. This rule maximizes speed of response for monitor and control applications requiring high-speed updates.

Applying network design recommendations

WirelessHART devices are located according to their process connection. Only an approximate location is required for location on the scaled drawing since the self-organizing mesh technology will adapt to conditions as they exist and change from the point of installation. The design rules ensure a concentration of WirelessHART devices for ample paths between the devices. This allows the self-organizing mesh to optimize networking in a dynamic environment.

When the “Rule of Three” is broken, it can be fortified by adding more devices. As networks grow, “Rule of Five Minimum” and “Rule of Three” become irrelevant as there are many devices in the process space. “Rule of Percentages” becomes dominant for large networks to ensure there is ample bandwidth for all devices in the network. Figure 6-7 shows an example of a network design where “Rule of Percentages” is broken.

Figure 6-7. Process with Rule of Percentages Broken
A deviation from the “Rule of Percentages” can be resolved in several different ways. Below are three options to fortify this network design, each with its own consideration.

1. Add more devices within the effective range of the Gateway. While this is a good solution, there may not be more points of value within effective range of the Gateway.

2. Move the Gateway into a more central location relative to the distribution of WirelessHART instrumentation. In this case, there may not be a convenient host system integration point at the center of the network.

3. Add another Gateway. This increases overall capacity for the process unit, addresses the needs of that specific concentration of field devices, and ensures long-term, trouble-free scalability. There may still be the issue with convenient host system integration point as with option 2.

Figure 6-8. Process with Two Gateways

If a wireless device requires update rates faster than two seconds or is used for control and does not meet the “Rule of Maximum Distance”, consider adding a Gateway as shown in Figure 6-8 or moving the existing Gateway closer to the wireless device. If the process control loop is tolerant of latency, or if it was previously a form of manual control, it may be acceptable to have devices further from the Gateway.

6.10.2 Post installation considerations for control and high speed networks

It is recommended that wireless field devices used for control and high speed monitoring have a higher path stability than general monitoring devices with updates slower than two seconds. Path Stability is the measure of successfully transmitted messages on any given path relative to the attempted transmissions. General requirements are 60% path stability, but 70% is recommended for control and high speed monitoring. The addition consideration provided in
this text ensures higher path stability that can be confirmed once the network is deployed. Most WirelessHART vendors provide the means to verify after installation.

6.10.3 Minimizing downstream messages for wireless output control devices

Digital control signals sent from a host system to a wireless output control device via the Gateway require a downstream message. In order to minimize the time for the downstream message to arrive at the wireless control device, downstream messages initiated by non-control applications should be minimized. Maximum downstream message time from Gateway to wireless control device is independent of the update rate and should be no more than 30 seconds when network design best practices are followed.

Techniques for limiting miscellaneous downstream messages are as follows:

- Limit remote configuration of wireless devices when control is in service.
- Limit device scans by asset management software.
- Limit other actions that require a remote poll and response from the wireless field device.

The update rate of the wireless control device determines how fast the host system receives notification that the control command was received and executed.

6.11 Spare capacity and expansion

During a typical project there is often a requirement to provide installed spare hardware (marshaling, I/O cards, and terminations) and additional spare space. Typically these figures could vary between 20-30%. The consideration when designing with wireless is different as no cabinetry marshaling, I/O cards, and terminations are required. Additional Gateways can be added to the network to increase capacity.

6.12 Fortifying

It is recommended to stress test the network design by altering the effective range of devices in order to identify potential weaknesses in the network design. To stress test the network, reduce the effective range of the devices in 10% increments. For example, suppose an effective range of 250 feet (76m) was used for initial design. Reducing effective range by increments of 25 feet (8m) (10%) could reveal where the weak spots will exist. It is the discretion of the network designer to determine what level the network will be stressed; there is a limit of diminishing return.

The example shown in Figure 6-9 reveals that one WirelessHART device fails the Rule of 3 under a 20% stress test of the effective range. Effective range is set to 250 feet (76m) for the design test on the left and 200 feet (61m) for the stress test on the right.
The self-organizing mesh technology allows for more WirelessHART field devices to be added to a network for the purposes of automation, and provides the means for simple design correction to also exist. A stress failure can be fortified by moving the Gateway location, adding a new Gateway to segment the network, adding more devices or adding repeaters.

Repeaters are an alternative to support the fortification of a network. Instead of another WirelessHART device with a specific measurement purpose, any WirelessHART device can be used specifically for the purposes of providing more connection within the network. Repeaters can be used effectively within dense infrastructure if they are placed above the infrastructure to maximize the effective range while maintaining connection with wireless devices in the infrastructure. WirelessHART adapters may make cost-effective repeaters if local power is available.

6.13 WirelessHART availability and redundancy

The WirelessHART field network is inherently redundant between the wireless field devices and the Gateway if the network design recommendations are applied. The user should expect no less than 99% reliability in the flow of data from each WirelessHART field device with typical performance approaching 100%.

The following are considerations for maximizing system availability between the host system and the WirelessHART Gateway:

- Always properly ground Gateways and field devices per local/national electrical codes and manufacturer recommendations.
- Always employ proper lightning protection on Gateways.
- Always use an uninterrupted power supply (UPS) to power the Gateway. This is the primary source of Gateway failure.
- Deploy redundant Gateways for the field network if measurements are critical.
- Make host systems connections to Gateways redundant, especially if redundant Gateways are used. This includes physical connections, Ethernet switches and power supplies.
6.14 **WirelessHART security**

When designing networks, every Gateway and thus every network must have a unique Network ID. Wireless device Join Keys may be configured as either common per Gateway or individual/unique per field device. If common Device Join Keys are selected as the option, each field device will share the same Device Join Key. If individual Join Keys are selected, each field device in the network will have a unique Join Key.

Individual Join Keys provide stronger security and are recommended. Even with common Join Keys, it is recommended practice to use different values for each Gateway and network.

6.15 **Alarm handling with WirelessHART devices**

Most modern industrial complexes will have a range of different methods for bringing sensor related data back into the central automation system. This may range from conventional analog (4-20mA) and discrete signals to more sophisticated digital transmission methods such as FOUNDATION Fieldbus, PROFIBUS® and WirelessHART. While all signaling methods have some degree of fallibility the important consideration should be that whatever technology is used, a process deviation is correctly detected, communicated and acted upon in a timely manner.

Digital devices have rich features which are not traditionally available with non smart 4-20mA devices. Smart devices using HART or Foundation Fieldbus technologies are capable of providing predictive alerts to warn of potential sensor failure which may lead to degraded process and operations. Additional non process related stresses may also impact the measurement quality; for instance:

- Crushed cables
- Excessive length
- Mechanical fatigue
- Poor glanding
- Cable routing complexity
- Routing between moving components
- Supporting cable weight
- Grounding

Intermittent and potentially unrevealed failures can be difficult to trace, costly to fix and lead to poor decisions by operators.

Wireless technology is also susceptible to environmental influence; for instance:

- Propagation
- Attenuation
- Distortion
- Interference

The benefit of IEC62591 WirelessHART is that failures are detectable. Erroneous data is not possible due to corruption of the data payload as measuring integrity checking indicates bad data. The sensing technology and process interface arrangements are identical to wired sensor transmitters therefore sensor erosion/drift issues are the same as conventional analogue non
smart devices. As previously mentioned IEC62591 WirelessHART provides a predictable capability to detect and advice on potential failure.

In either case wired or wireless, utilizing best practice recommendations can reduce the probability of failure.

Figure 6-10. Alarm Propagation to the System

6.15.1 Alarm recommendations for process plant

Wireless devices have periodic updates which vary from one second to many minutes. For the purpose of this discussion it is considered that the wireless point will have a fixed scan rate. That is, a pre-configured rate at which the device sensor is energized and a reading of the process is made (i.e. smart updates are not applicable). When assigning an alarm to a process variable consider the following factors when determining an appropriate scan rate (DCS control algorithm or wireless device):

- **Process Time**: what is the expected rate of change for the process variable? How rapidly does a process variable approach abnormal operating conditions? This should accommodate sudden process swing which may move the process variable outside the normal operating range.
- **Operator Response Time**: what is the time for an operator to respond to an alarm and correct the fault?

Generally to satisfy the conditions, the device scan rate must be at least \[4\] times the process time constant (including dead time). In practice the operator response time is likely to be several scans longer than this and does not need to be included in this calculation.
Factors affecting the multiplier are:
- Ability to synchronize communications with alarm processing functions
- Ability to send data by exception

6.15.2 Alarm priority

Assignment of alarm priority must follow the criteria as defined in the alarm philosophy for the plant (refer to Table 6-3). The subsequent alarm rationalization exercise will define the purpose, intent and consequence of each alarm.

Table 6-3. Alarm Priority

<table>
<thead>
<tr>
<th>Priority</th>
<th>EEMUA(1) %</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>80</td>
<td>Wireless Possible: Monitoring and assessed control loops</td>
</tr>
<tr>
<td>Medium</td>
<td>15</td>
<td>Conventional Wired</td>
</tr>
<tr>
<td>High</td>
<td>5</td>
<td>Conventional Wired</td>
</tr>
</tbody>
</table>

(1) EEMUA 191 (The Engineering Equipment and Materials Users’ Association Publication 191 for Alarm Systems).

Generally between 65% to 80% of alarms will be low priority with minimal risk and consequence, and therefore these points are all possible candidate points for WirelessHART devices.

6.16 Data sheet parameters for **WirelessHART** transmitter

Shows part of a typical WirelessHART transmitter specification section of a data sheet.

Figure 6-11. Part of WirelessHART Transmitter Specification of Data Sheet

<table>
<thead>
<tr>
<th>TRANSMITTER</th>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Scan Rates</td>
<td>1 Second 2 Seconds 4 Seconds 8 Seconds 16 Seconds 32 Seconds 1 to 60</td>
</tr>
<tr>
<td>23</td>
<td>Operating Frequency</td>
<td>2.4 GHz 655.2 MHz WirelessHART</td>
</tr>
<tr>
<td>24</td>
<td>Antenna Type</td>
<td>Omnidirectional Antenna High Gain Antenna Directional Antenna</td>
</tr>
<tr>
<td>25</td>
<td>Diaphragm/Wetted Material</td>
<td>Hastelloy C276</td>
</tr>
<tr>
<td>26</td>
<td>Type of Protection</td>
<td>Intrinsically Safe</td>
</tr>
<tr>
<td>27</td>
<td>Communication Protocol</td>
<td>WirelessHART</td>
</tr>
<tr>
<td>28</td>
<td>Body Material</td>
<td>316L STS</td>
</tr>
<tr>
<td>29</td>
<td>Encoder Type Class</td>
<td>IP66</td>
</tr>
<tr>
<td>30</td>
<td>Transmitter Output</td>
<td>Wireless with User Configurable Transmit Rate</td>
</tr>
<tr>
<td>31</td>
<td>Hazardous Protection</td>
<td>Zone 2 IC T4</td>
</tr>
<tr>
<td>32</td>
<td>Loop Power Supply</td>
<td>Lithium Battery Energy-Harvesting Wired Power</td>
</tr>
<tr>
<td>33</td>
<td>Accuracy</td>
<td>+/- 0.05% of F.S.</td>
</tr>
<tr>
<td>34</td>
<td>Network ID</td>
<td>(0000-32000)</td>
</tr>
<tr>
<td>35</td>
<td>Join Key</td>
<td>Enable Disable</td>
</tr>
<tr>
<td>36</td>
<td>Body Type</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Digital Communication</td>
<td>WirelessHART</td>
</tr>
<tr>
<td>38</td>
<td>Digital Display</td>
<td>Pressure % of Range Scalded Variable Sensor Temperature Supply Voltage</td>
</tr>
<tr>
<td>39</td>
<td>Output Information</td>
<td>Write Project: Enabled Disabled</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALARM</th>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>Pressure/Process Alert</td>
<td>LTL ≤ LO LO Alert ≤ LO Alert HI HI Alert ≤ UTL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH1</td>
</tr>
<tr>
<td></td>
<td>LO LO Set Point</td>
<td>Deadband</td>
</tr>
<tr>
<td></td>
<td>LO Set Point</td>
<td>Deadband</td>
</tr>
<tr>
<td></td>
<td>HI Set Point</td>
<td>Deadband</td>
</tr>
<tr>
<td></td>
<td>HI HI Set Point</td>
<td>Deadband</td>
</tr>
</tbody>
</table>

Note

Inclusion of “join key” in the data sheet above is optional.
6.17 Tools and documentation

This section explains the input documentation and tools required in the detailed design phase.

6.17.1 Functional design specifications

Use the Functional Design Specifications developed in the FEED stage as reference for detailed design.

6.17.2 Instrument index/database

Refer to SPI 2009 documentation for recommendations for additional fields not typically included in wired HART specifications.

6.17.3 Instrument data sheets

Use standard data sheets created for wired HART devices. Update the specification fields shown in Table 6-4 to reflect WirelessHART.

<table>
<thead>
<tr>
<th>Specification field</th>
<th>Typical HART field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Update Rates</td>
<td>1, 2, 4, 8, 16, 32, 64+ sec</td>
</tr>
<tr>
<td>Power Supply</td>
<td>Intrinsically Safe, Field Replaceable Battery</td>
</tr>
<tr>
<td>Communication Type</td>
<td>IEC 62591</td>
</tr>
</tbody>
</table>

No special ISA or other specification sheets are required since the same sheets can be used to specify HART, FOUNDATION Fieldbus, or WirelessHART. See Appendix A for a specification sheet example for a WirelessHART Gateway.

6.18 Testing

This section explains the WirelessHART testing during Factory Accepting Testing (FAT), site installation and commissioning, and Site Acceptance Testing (SAT).

The testing phase is important to confirm that the delivered WirelessHART solution meets the customer requirements and design references used in the project. Prepare the test plan which shall include a description of the stages of WirelessHART scope testing, hardware FAT, software FAT, and 3rd party interface testing.

Figure 6-12 shows the inputs and outputs of the testing steps within the execute phase.
6.19 **Factory Acceptance Test (FAT)**

FAT requires establishing a connection between the Gateway and the host systems. *WirelessHART* Gateways typically have standard output communication protocols that directly connect to any host system. The design team should keep a library of these integration options for reference.

The key deliverable of a FAT is the integration of data from *WirelessHART* instruments into the host system via the Gateway. The scope of the FAT should be agreed with the end user. Typically, only a subset of the field devices and Gateways to be installed is used during the FAT.

6.19.1 **Factory staging**

The following are basic requirements for factory staging:

- Include a sample of all applications, Gateways and *WirelessHART* devices.
- Use an approved test plan, test procedure and test acceptance criteria.
- Verify a HART Field Communicator and user interface to the *WirelessHART* Gateway.

6.19.2 **Assumptions**

Below are assumptions for FAT:

- Network topology testing is covered as part of the SAT.
- *WirelessHART* network design does not need to be tested at the factory if network design recommendations are implemented. The conservative nature and ability to fortify the network with repeaters upon installation ensures high confidence of reliable operation.
6.19.3 FAT requirements

The following are key requirements of the FAT:

- Physical connection between the Gateway and the host system is verified. Can the Gateway be accessed from the host system with the proper security policy in place?
- Protocol connection between the Gateway and the application that resides on the host system is verified. Can the data seen in the Gateway be seen in the application? Can the standard parameters be properly mapped?
- Gateway can support all necessary connections to all required applications with appropriate timing.
- Device Descriptor (DD) for all field devices in any asset management solution is tested. This ensures the correct DD is installed and valid. This is especially important for WirelessHART devices that are new to the market.

6.19.4 FAT network configuration

*WirelessHART device shall be configured with the Network ID and Join Key and sufficient time for network polling. The transmitter shall be detected by the network. To verify connectivity, open the host interface and check if *WirelessHART device is available.*

- FAT network shall cover testing aspects for hardware, configuration, communication, security.
- Before setting up the network, carry out the pre power up check for each component on the network.

6.19.5 Wireless network troubleshooting

If a *WirelessHART Device* is not joining the network then follow steps listed below.

1. Verify network ID and join key.
2. Wait longer (30 min.).
3. Enable high speed operation (Active Advertising) on smart wireless Gateway.
4. Check battery.
5. Verify device is within range of at least one other device.
6. Verify network is in active network advertise.
7. Power cycle device to try again.
8. Verify device is configured to join. Send the “Force Join” command to the device.

6.19.6 FAT procedure

Since there are no physical IO modules, software testing is performed by simulation of I/O at the processor level. This level of simulation is adequate to verify the application software within the host control system.

As per IEC 62381 standards on FAT, general guidance as described for testing of bus interfaces and subsystems shall apply. A subset of instruments (at least one of each type) shall be connected to the Gateway as a proof of concept demonstration of integrated system.
functionality. This test should ideally verify the connectivity of the field device to the Gateway and from the Gateway to the host systems.

Where physical devices will not be tested at the factory, emulation of the interface will be performed if required.

Below is a high level procedure for performing FAT.

1. Power the Gateway
2. Add one of each type of WirelessHART device to the network and verify proper connectivity. All Gateway fields for data from the WirelessHART device should be properly populated.
3. Create first physical connection to the first required host system application.
4. Verify connectivity between the Gateway and the host system application.
5. Integrate necessary data from each sample WirelessHART device into the host system application.
 - Optional additional procedure is to change process variables in the WirelessHART device through direct stimulation or through simulation. All devices, once properly connected to the Gateway, should integrate identically over protocols like Modbus® and OPC.
6. Repeat Step 4 through Step 6 while adding host system connections to the Gateway until all expected connections to the Gateway are complete.
7. Test integration into an asset management solution if applicable.
 - Verify each WirelessHART device can be properly accessed and configured via the asset management solution.
8. Add any additional procedures to verify control narratives and monitoring narratives.

6.19.7 FAT tools
- Handheld communicator
- Multi-meter
- Computer setup with Gateway/card interface software

6.19.8 FAT documentation and reports
- FAT plan
- FAT procedure
- FAT checklist

6.20 Site installation

In general, WirelessHART devices are installed exactly like wired HART devices. Emphasis should always be placed on making the best possible process connection for accurate measurement. The self-organizing mesh technology in WirelessHART enables wireless field devices to self-route through the process environment and reroute when the environment changes. Always refer the instruction manual of the WirelessHART device for specific considerations. This is covered in detail in WirelessHART Field Network Design Guidelines.
WirelessHART adapters are typically installed on an existing HART enabled device or somewhere along its 4-20 mA loop. Refer the manual of the WirelessHART adapter for specific considerations.

WirelessHART Gateways are typically placed 6 feet (2 meters) above the process infrastructure (typically above cable trays) and located in the process unit where the maximum number of direct connections with wireless field devices can be achieved. Gateways may have an integrated or remote antenna for installation flexibility.

WirelessHART repeaters are typically mounted 6 feet (2 meters) above the process infrastructure and should be located in areas of the wireless network that need additional connectivity.

It is recommended to install the Gateway first in order to allow host system integration and wireless field device installation and commissioning to commence in parallel. Wireless field devices can be commissioned as soon as process connections are in place and a device is joined to a network. Once the wireless device is activated with proper configuration, update rate, and security provisions for Network ID and Join Key, it will form a network that compensates for the current condition of the process unit and will adapt as the unit is built. The project manager can have wireless device installation occur in parallel with construction to maximize project time buffers or pull in the project completion date.

6.21 Site installation plan

6.21.1 Installation considerations

- Use the device specific instrument manuals for installation instructions.
- Install instruments and process connections. Take cautions to keep the antenna from being directly mounted against metal surfaces.
- Fiberglass instrument enclosures provide no significant impact to wireless performance.
- If wireless instruments are mounted inside a building, relative to the majority of the wireless instruments, a passive antenna or additional repeaters should be used to ensure good connectivity.

Installation practices for WirelessHART devices follow very closely to the installation practices of wired HART instruments. Since there are no wires, WirelessHART devices can be installed as soon as the asset or infrastructure is in place and secure.

6.22 Network installations

Always install the Gateway first so that integration and field network installation and commissioning can occur in parallel.

Field devices can be commissioned into the Gateway and then commissioned into the host system application.

In general, WirelessHART devices are installed per the practices of wired HART devices. Always refer the product manual for details.
WirelessHART devices close to the Gateway should always be installed and commissioned first to ensure connections for potential devices that cannot directly connect to the Gateway. This is the easiest way to establish the self-organizing mesh.

WirelessHART devices can be installed in close proximity to each other without causing interference. The self-organizing mesh scheduling of WirelessHART ensures devices in close proximity to each other are silent, talking to each other, or talking on different RF channels when other devices are communicating.

If a WirelessHART Gateway antenna or WirelessHART device antenna is to be mounted near a high power antenna of another wireless source, then the antenna should be mounted at least 3 feet (approximately 1 meter) above or below to minimize potential interference.

For achieving better network bandwidth check for following:

- Reduce the update rate on transmitters
- Increase communication paths by adding more wireless points
- Check that device has been online for at least an hour
- Check that device is not routing through a “limited” routing node
- Perform wireless connection test procedure

6.23 Wireless connection test procedure

Before beginning the wireless connection test procedure, verify the WirelessHART device has basic connectivity to the network either through the Gateway interface, a local user interface on the device, or a local connection via a HART Field Communicator. If the device is not joining the network within a reasonable time period, verify the presence of power and the use of proper Network ID and Join Key. This assumes the Gateway is installed properly, powered and accessible, that the network is designed per best practices, and that there are devices to which the new device being commissioned can connect.

1. Wait a minimum of at least 1 hour from initial powering of the WirelessHART device before performing the wireless connection test procedure. This dwell time ensures the device has had time to make several connections for self-organization. Multiple devices can be tested at the same time. Since they rely on each other, it is optimal to have as many on the network as possible for initial connection testing.

2. Verify that network diagnostics indicate proper bandwidth of the device. The Gateway should have an indication.

3. Verify each device has a minimum of two neighbors. The Gateway should have an indication.

4. Verify device reliability is 99% or greater. Statistics may need to be reset and re-certified to remove any anomalies incurred during start up and not indicative of long term performance. Allow at least one hour for the network to gather new network statistics.

5. Verify sensor configuration per the loop sheet or other form indicating designed configuration.

7. Repeat for each device in the network.
If a device does not pass the wireless connection test, follow the basic steps below:

1. Wait until entire network is built and operating for 24 hours before considering further action. This will give the Gateway time to maximize its self-organization for best communication. If 24 hours is too long to wait, allow a minimum of 4 hours.

2. For the non-compliant device, verify proper path stability and RSSI values. Path stabilities should be greater than 60% and RSSI should be greater than -75 dBm. Wireless control devices and devices with update rates faster than 2 seconds should have a path stability of 70% or greater. If all the devices on the network have very low path stabilities, but high values for RSSI, this could be an indication of broadband interference.

3. Look at the location of the non-compliant device in the network. Verify there is not a broken network design rule or an unexpected installation resulting in poor RF signal propagation.
 a. Add repeaters if necessary to fortify the network if the device is isolated from the network with poor connections.

4. Verify the device has proper power and is working properly as a sensor.

5. Verify the device update rate is not faster than the fastest allowed by the Gateway.

6. Either reduce the update rate of the field device or increase the fastest allowed update rate on the Gateway.

6.24 Network checkout procedure

Below are basic steps for checking out a network. Allow a minimum of four hours for the network to self-organize (24 hours is preferred).

1. Verify that all devices connected pass the wireless connectivity test. The Gateway should have an indication.

2. Verify a minimum of 15% of devices are directly connected to the Gateway. The design parameter is 25%; the minimum acceptable is 10%. Networks with more than 20% of devices with update rates faster than two seconds or wireless control devices have a design parameter of 50% and 40% should be connected after installation. The Gateway should have an indication.

3. Verify overall network reliability is greater than 99%. The Gateway should have an indication.
6.25 **Lightning protection**

1. Ensure the *WirelessHART* device bodies are correctly grounded.

2. The installation manuals of all *WirelessHART* devices should be consulted prior to installation.

3. In general, *WirelessHART* devices should not be the tallest feature in the plant to maximize protection against lightning.

4. Ensure adequate protection is provided between the *WirelessHART* Gateways and host system connection as a lightning strike could damage more than just the *WirelessHART* Gateway.

5. In general, wireless devices may provide better protection of the system than wired, as the energy from a lightning strike will not be able to travel through the wiring and cause potential damage to other components. Standards such as NFPA 780 provide classification for zones of protection from lightning as well as techniques for proper implementation.
6.26 Device parameter configuration verification

Device Parameters verification is important before putting in to service. Device parameter list will change based on device type. However, following is the list of common WirelessHART parameters that can be used for verification. These parameters can be verified along with device datasheet specifications.

- TAG
- Device ID
- Network ID
- Network Join status
- Wireless mode
- Join Mode
- Number of available neighbors
- Number of advertisements heard
- Number of Join attempts
- Manufacturer
- Device type
- Device revision
- Software revision
- Hardware revision
- Identification
- Revisions
- Radio
- Sensor information
- Electronics temperature
- Supply voltage
- Supply voltage status
- Last update time

6.27 Loop checkout/site integration tests

Once WirelessHART devices are connected to the Gateway and the network is checked out, the loop checkout may not be necessary in the traditional sense.

Wireless connection testing verifies that each field device has the proper configuration. Since there are no wires to get confused and swapped, there is no need to do the traditional loop check. Alternative loop checks could be to ensure each field device is reporting to the correct Gateway and each Gateway is connected into the correct host system. Traditional applications of sensor stimulus can be performed for confidence, but are less valuable in a pure digital architecture if there is complete assurance a field device was commissioned with the correct tag and configuration.

6.28 Bench simulation testing

Each WirelessHART field device is compliant with the IEC 62591 protocol which has provisions for simulation. Each device can be put into a simulation mode. Bench simulation testing should also verify that all HART Field Communicators have the proper configuration and device descriptors (DDs) for accessing the local user interface of field device when in the field.

6.29 Provision of spares

Below are the recommended spares to have on-site:

- Spare lightning arrester components for Gateways, if lightning protection is used
- Spare Gateways should be kept according to spares policy for host system equipment (e.g. I/O cards). Configurations for Gateways should be convenient for rapid replacement if necessary.
- Spare battery modules
- Spare field devices as determined by the policy for wired field devices. Consideration should be given for additional devices to be used as repeaters, if necessary.
6.30 Removal of redundant equipment

Repeaters used temporarily to fortify a network can be removed and reused if the WirelessHART network grows to a point where repeaters are no longer needed.

6.31 Pre-commissioning

6.31.1 Pre-commissioning requirements

1. Determine which WirelessHART instruments and WirelessHART Gateways are installed correctly. Crosscheck instrumentation against Instrument Data Sheets.

2. Conduct site walk-through to determine WirelessHART Gateway location and any infrastructure barriers. Ensure local power is available for WirelessHART devices and Gateways and Plant Network radios.

3. Determine smart wireless Gateway connection back to host system (Serial, Ethernet, Wi-Fi Network).

4. Determine if other forms of existing wireless present in and around the location that may cause interference (cell phone towers, high power radio transmitters).

6.31.2 Defining WirelessHART pre-commissioning methods and acceptance

Define the pre-commissioning activities for the following:

Devices

Confirm device installation and configuration as per customer requirements and specifications.

Network

Confirm the network is up and running in the smart wireless Gateway. Verify each device is connected and network meets best practices (neighbors, hops etc.).

Security

Verify security set-up and configure. Configure firewall as per requirements (optional).

Power up sequence

The battery should not be installed on any wireless device until the wireless Gateway is installed and functioning properly. Wireless devices should also be powered up in order of proximity from the wireless Gateway, beginning with the closest. This will result in a simpler and faster network installation. Enable active advertising on the Gateway to ensure that new devices join the network faster.
6.32 Site Acceptance Test (SAT)

The site acceptance shall cover primarily all WirelessHART infrastructures, associated hardware, software and operational checks.

1. Verify the installed infrastructure as BOM.
2. Verify network communication.
3. Verify the correct configuration of WirelessHART network components.
4. Verify data communications between wireless devices and DCS
5. Verify faceplates and all HMI elements for connected wireless devices
6. Prepare SAT report and sign off with owner-operator.

Documentation for site acceptance test documentation:
- SAT plan
- SAT procedure
- SAT checklist

6.33 Commissioning and start-up

WirelessHART Gateways segment the commissioning process. Since Gateways connect the wireless field devices to the host system, WirelessHART devices can be commissioned to the Gateway to ensure proper connectivity independently of verifying integration into the host system. A wireless loop check can confirm connectivity from the wireless field device through the Gateway to the host system. Interaction with the process and the WirelessHART device can confirm the device is operational.

6.33.1 Wireless network integration with HMI and loop check

Verify device variables in the smart wireless Gateway. Also check parameters like TAG, Device ID, network ID, network Join status and device status. Verify device operation from three places:

1. At the device via the local display
2. Using the handheld communicator
3. Host system user interface

6.33.2 Integrating host and field networks

1. Configure the wireless Gateway or wireless interface network ID and join key and verify connection.
2. Check the installation of the wireless Gateway and power up.
3. Host Integration of Gateways through Ethernet connectivity.
4. Host Integration of Gateways through Serial connectivity.
5. Host Integration Gateways through fiber optics.

6. Host integration over Wi-Fi link.

6.33.3 On-site wireless network reliability tests

- At device level check:
 - Join status
 - Wireless mode
 - Join mode
 - Number of available neighbors
 - Number of advertisements heard
 - Number of join attempts

- Duration based tests (carry out the following tests):
 - Loop response time
 - Consistency in process data update
 - Network and device uptime confirmations
 - Obstruction tests
 - Network uptime test for 2, 4, 8, 12, 24 Hours

- Wireless site execution (maintain the records for the following topics):
 - System files (including diagnostics)
 - Diagnostics
 - Validation form
 - Wireless deviation register
 - Punch lists
 - Final bill of material list
Section 7 Operate

7.1 Section overview

Operate phase for WirelessHART® network covers aspects like WirelessHART asset management, data management concepts, maintenance practices, etc.

Figure 7-1 shows inputs and outputs of the operation phase.

7.2 Asset monitoring

With the use of wireless asset management applications, users can plan, customize, visualize and manage smart wireless networks. The asset management system handles predictive diagnostics, documentation, calibration management, and device configuration for managing field instruments. The asset management system allows changing, storing, comparing, and transferring device configurations without ever going into the field. Streamline the calibration by defining device test schemes, scheduling device calibration, and managing device calibration data.
With the asset management system, wireless diagnostics are organized across multiple wireless Gateways. The asset management system provides detailed reports. Below are the lists of fields you can use in your reports:

- Device tag/Gateway
- Battery voltage
- Update rate
- Ambient temperature
- Status
- Parents/children/neighbors

7.3 Alarm and alerts philosophy

7.3.1 Configure process alerts

Process alerts allow the transmitter to indicate when the configured data point is exceeded. Process alerts can be set for process variable and secondary variable. For example, for pressure transmitter, process alerts can be set for pressure, temperature, or both. The alert will reset once the value returns within range.

Device Alert displayed:

- On the Field Communicator
- On the Asset Management System Status screen
- In the error section of the LCD display of instrument

The following alarms configuration can be used for WirelessHART device:

- HI HI Alarm
- HI Alarm
- LO Alarm
- LO LO Alarm

7.4 Data management concepts

Maintain WirelessHART system configuration data during normal operation. Periodic system backup should be used from system software. Maintain device configuration and audit trails.

Use maintenance, calibration, and inventory documentation requirements from host system capabilities.

7.5 Maintenance practices

Maintain each WirelessHART device per the device manual.

The network will self-organize and provide alerts for changes requiring intervention. The Gateway should have an indication of performance issues in the network or field devices.
Section 8 Project Management

8.1 Section overview

This section explains project management aspects for WirelessHART® projects.

8.2 WirelessHART project management overview

This section summarizes the overall concept of WirelessHART project management.

8.2.1 Customer requirements, compliance, and assumptions

Customer requirements document should be evaluated thoroughly based on parameters like past project knowledge base, system and technology capabilities, project best practices etc. Regional and country specific requirements must be understood correctly.

Prepare compliance to customer requirements document. Use valid assumptions and discuss uncertain information with the owner-operator.

8.3 Work breakdown structure and cost estimation

Vendors of WirelessHART field devices may have cost calculators and capital project studies that can be referenced and compared to support the cost justification of wireless in a project or an all wireless project. For a large capital projects, wireless can reduce costs by switching wired monitoring points to wireless.

Design Engineers should assess and incorporate the following factors in their project cost estimating calculation model:

- Reduced engineering costs (including drawing and documentation, and Factory Acceptance Test)
- Reduced labor (field installation, commissioning, supervision)
- Reduced materials (terminations, junction boxes, wiring, cable trays/conduit/trunking, power supplies, and control system components)
- Reduced cost of change order management (including adding, removing, and moving field devices)
- Reduced project execution time (including commissioning of wireless field device simultaneously with construction)
- I/O capacity management (each WirelessHART Gateway essentially provides spare I/O capacity)

8.4 Subcontractor scope management

Wireless enables simplified subcontractor scope management. Packages can be easily tested and commissioned separately, requiring only minimal integration and testing to occur. Additionally, the subcontractors will also benefit from fewer components and engineering. Tender contracts should be amended to recognize reduced complexity and eliminated work.

8.5 Project scheduling

1. Review schedules to recognize:
 a. Limited infrastructure installation and hence reduced material and installation scope.
 b. Remove some electrical and instrumentation checkout processes.
2. Amend contracts to reflect simplified installation handover processes.
3. Simplify installation schedule management.
4. Reduce material coordination management and simplified construction schedule.
5. Eliminate scheduling and expediting associated with marshaling cabinets.
6. Reflect in the schedule: eliminated activities and simplified FAT, SAT, and SIT (site integration test) on areas where wireless has been extensively deployed.

8.6 Responsibility and skills matrix

1. Amend roles and responsibility matrix to reflect reduced/eliminated responsibilities.
2. Ensure engagement of all project stakeholders/sub-contractor so that wireless can be applied efficiently to improve schedule and material costs.
3. Develop a responsibility and skills matrix for each phase of the project.
4. End user, EPC Contractor, and Main Automation Vendor shall define the roles and responsibility matrix for each task of the project lifecycle like pre-FEED, FEED and Execute phase of project.
4. Assign stakeholders with role description like:
 - Responsible
 - Accountable
 - Consulted
 - Informed

8.7 Managing project change requests

For project change orders and other late design changes, wireless should be considered as the primary solution unless other design considerations exist. Using wireless will result in the fewest changes to the documentation, I/O layout and other detailed design as well as faster commissioning since you can move wireless devices without having to also re-engineer the wiring.

8.8 Progress reviews and reporting

Define the project execution stages for review. Prepare review reports and inform all stakeholders.

8.9 Customer deliverables

Prepare the list of documentation to be submitted to customer.

8.10 Training

Include the training requirements for plant operators, maintenance team and engineering team.

8.11 WirelessHART procurement and contract plan

Check completeness of contract documents like technical specifications, delivery requirement (time and location), quote requirement (expected date and validity, regional regulations for WirelessHART other T&C’s), and documentation and certification requirements.

8.12 Material requisitions

Given the need for security and RF emissions, vendors must acquire approvals for importation to the country of end-use for compliance with local spectrum regulation and encryption regulation. The vendor can verify whether importation compliance exists for any given country.

The batteries are commonly made using a high energy compound using Lithium Thionyl Chloride. The Material Safety Data Sheet or equivalent should always be available as well as awareness of any shipping restriction; notably most countries do not allow the transportation of lithium batteries on passenger aircraft.
8.13 Documentation requirements in project execution

- Equipment 3D layouts
- Site plan
- Drawings
- Control narratives
- Project management plan
- Site execution plan
- Testing (FAT and SAT)
- Installation procedure and checklists
- Commissioning and start-up checklists
- Sign off documents

Every project will require the establishment of local standards for implementing consistent documentation.

See Section 13: Documenting in Intergraph SPI 2009 for a complete treatment of documentation.

8.13.1 ISA documentation

Key points

- There is no difference in the symbol between a HART, FF, and a WirelessHART device. An instrument is an instrument.
- The line style for indicating a wireless signal is a zig zag and not a dash.

Below is an image from the ISA-5.1 document showing some comparative examples. Reference ISA-5.1 for complete details.

Figure 8-1. ISA 5.1 Wireless Drawing

8.9.3 Shared Display, Shared Control Instrumentation:

8.9.4 Shared Display, Shared Control Instrumentation with Diagnostic and Calibration Bus on Field Wiring:

8.9.5 Shared Display, Shared Control and Wireless Instrumentation:

- The implementation of WirelessHART requires far fewer components, making drawings simpler.
PART II

WirelessHART® Field Network Components
Section 9 Field Device Requirements

9.1 Support for WirelessHART functionality

All WirelessHART devices support methods to allow remote access to device configuration, backwards compatibility with existing field communicators, full implementation of WirelessHART security provisions, and WirelessHART interoperability.

9.1.1 Device diagnostics

HART® diagnostics

WirelessHART devices contain similar or a subset of all of the diagnostics of wired HART devices. Diagnostics information is available through HART commands as well as accessible through Device Descriptions (DD) either locally through a field communicator or remotely using asset management software.

Wireless field device network diagnostics

Every WirelessHART field device should have diagnostics that indicate whether or not the device is connected to a network.

Wireless field device power diagnostics

Wireless field devices may have one of three power options: battery, energy harvesting (including solar), or line power. Batteries will have a life determined by the update rate of the wireless field device, network routing for other wireless field devices, and efficiencies of the sensor and electronics.

Typically, the primary consumer of power is the process sensor and electronics in the wireless field device. Using the WirelessHART radio or acting as a repeater for other WirelessHART field devices requires minimal power. Wireless field devices report their battery voltage and have integrated low voltage alarms such that the user can either schedule maintenance or take a corrective action.

Gateway network diagnostics

Gateway network diagnostics should indicate whether field devices are connected and functioning properly, and whether devices are missing from the network. In order to be connected properly, appropriate bandwidth must be allocated based on the update rate of the device. A device connected but with service denied may indicate the device has an update rate.
that is too fast for the network capability or the network conditions. With Gateways capable of serving 100 devices or more, clear indication of device availability is crucial.

Additionally, Gateways should be able to detect, regardless of host system integration, whether a wireless field device is connected. This information should be continually updated and indicate if network or device reasons are responsible for a device to not be connected. Simple device states should be made available for integration into the host system to indicate online/offline status regardless of output protocol from the Gateway.

9.2 Mounting

9.2.1 Device mounting considerations

Verify the process application such as gas, liquid and steam flowing through the process lines.

Check for device process connection requirements and ensure the process line isolation before installation.

If the transmitter installation requires assembly of the process flanges, manifolds, or flange adapters, follow Device Manual assembly guidelines to ensure a tight seal for optimal performance characteristics of the transmitters.

9.2.2 Antenna position

Position the antenna vertically, either straight up or straight down. The antenna should be approximately 3 ft. (1 m) from any large structure or building to allow clear communication to other devices.

9.2.3 Mounting high gain remote antenna

The high gain, remote antenna options provide flexibility for mounting the WirelessHART device based on wireless connectivity, location, and lightning protection requirements.

Choose a location where the remote antenna has optimal wireless performance. Ideally this will be 15-25 ft (4.6 - 7.6 m) above the ground or 6 ft (2 m) above obstructions or major infrastructure.

Check for weather proofing/lightning arrester requirements.

9.3 Power

Wireless field devices may have one of three power options: battery, energy harvesting (including solar), or line power and there may be several options within each category.

9.3.1 Batteries

The most common will be the use of a battery for low power field devices due to ease of deployment. Most vendors will use battery cells incorporating Lithium Thionyl Chloride chemistry since it has the highest energy density, longest shelf life, and widest working temperatures that are commercially viable. Although typical cells look like battery cells for consumer electronics, precautions should be taken to ensure batteries are safely transported
and introduced into the process environment. Refer to “Vendor documentation” for safe handling practices.

Battery requirements include the following:

- Cells should be assembled by a manufacturer into a battery module to ensure safe handling and transportation.
- Module should prevent a depleted cell being introduced in a circuit with a charged cell, since this can cause unintended electrical currents and heat.
- Module should provide ease of replacement. Battery replacement should take minimal time and training.
- Module should be intrinsically safe and not require removal of the wireless field device for replacement.
- Module should prevent intended and unintended short-circuiting that could lead to heat or spark.
- Module should be designed for the process environment with mechanical properties that provide drop protection and operation over normal process temperatures expected for devices.
- Module should come with necessary Material Safety Data Sheets (or equivalent) and warnings and be disposable per local governmental regulation.
- Module should not be capable of connecting to consumer electronics or non-designed applications to prevent a high-capacity supply from being connected to incompatible electrical systems.
- Modules should be applicable to several WirelessHART field devices to maximize inventory management efficiencies in the local warehouse for spare parts.

The design engineers and end users of the wireless field network should use update rates that maximize the life of the battery module and minimize maintenance.

For achieving longer battery life check for following recommendations:

- Check that “Power Always On” mode is off.
- Verify device is not installed in extreme temperatures.
- Verify device is not a network pinch point.
- Check for excessive network rejoins due to poor connectivity.

9.3.2 Energy harvesting

Vendors may provide energy harvesting options as alternatives to batteries that may include solar, thermal, vibration, and wind solutions. Current energy conversion techniques for thermal and vibration are relatively inefficient. In many cases, energy harvesting solutions also utilize rechargeable batteries to maintain constant back-up power supply. Today’s rechargeable batteries have a life expectancy of only several years during which they can maintain a full charge and are often sensitive to temperature change for supplying power and recharging.

Requirements for energy harvesters are as follows:

- Energy harvesting device should have a designed connection to the wireless field device.
- Energy harvesting device should have means for providing multiple days of back-up power in the event the energy source is discontinued for several days.
9.3.3 Wired power

A wired power option for wireless field devices is an emerging option from vendors since the cost of local power can be less than the cost of a control signal wire with power or a power module. Some WirelessHART adapters may harvest power off of the 4-20 mA loop to wired HART devices. Applications with high power sensors may need to be wireless to meet a communications specification, but require more power than a battery or energy harvester can provide.

Requirements for a wired power option are as follows:

- **WirelessHART adapters** harvesting power from the 4-20 mA signal of the wired device should not affect the 4-20 mA signal during normal operation or failure mode.
- Low voltage powered wireless devices (<30 VDC) should be capable of operating over a range of voltages – example: 8-28V using standard low voltage wiring practices.
- Wired powered option may require the use of Intrinsically Safe barriers between the DC voltage source and the wireless field device.

9.4 Security

Security is a new consideration for wireless field devices that is driven by an increased focus on the protection of critical infrastructure by governments and other security authorities.

The requirements for wireless field device security are as follows:

- Wireless devices should be compliant with all WirelessHART security provisions including correct usage of Network ID and Join Key.
- The user or unintended user should not be able to physically or digitally read the Join Key from the wireless device. The Join Key(s) should be treated as confidential and subject to the requirements of any local security policy.
- The wireless device should be receptive to security changes initiated by the Gateway, including Network ID, Join Key, and the network, session, and broadcast keys that validate packets sent through the network and prevent tampering and eavesdropping.
- The Gateway and any management program connected to the WirelessHART network through the Gateway should protect all security parameters according to a local security policy.
- Wireless field devices should not have a TCP/IP address in order implement a layered security policy. The exception is the Gateway with a TCP/IP connection to the host system via a firewall.
9.5 Approvals

Every WirelessHART device must have the appropriate hazardous area approval to meet the conditions of the process environment as well as the appropriate spectrum and encryption approvals. Spectrum and encryption of wireless signals are regulated by government agencies, such as the FCC in the United States. Typically, verifying with the WirelessHART device manufacturer that the device has proper approval for importation into the country of usage is sufficient. Spectrum and encryption approval are a procurement issue and do not represent a design parameter like a hazardous area approval.

9.6 Accessibility

WirelessHART devices are subject to the same mechanical and electrical specifications as wired HART devices as they operate in the same process environments.

General requirements for WirelessHART field devices are as follows:

- WirelessHART devices shall be locally accessible with HART field communicators that support wired and WirelessHART devices.
- WirelessHART devices shall be manageable with remote asset management systems that access the WirelessHART device via the Gateway and through the WirelessHART network.
- WirelessHART adapters shall extend the benefits of a WirelessHART network to wired HART devices that may or may not be operated on a 4-20 mA loop.

9.7 Manufacturer documentation

Every WirelessHART device should have the proper documentation, including a manual, as would be expected with a wired HART device.
Section 10 Ancillary WirelessHART Devices

10.1 Section overview

An ancillary device is defined as any device that does not contain a measuring sensor or output to the process for actuation. These include wireless Gateways, local indicators, wireless repeaters and/or WirelessHART® adapters.

10.2 Gateways

The Gateway enables communication between wireless field devices and host systems connected to an Ethernet, serial, or other existing plant communications network. WirelessHART manufacturers have typically chosen to integrate the network manager, security manager and access point functionalities into one product. Conceptually, the Gateway is the wireless version of marshaling panels and junction boxes.

Figure 10-1. Gateway System Architecture
Requirements for a WirelessHART Gateway are as follows:

- Provide an easy to manage solution for enabling Gateway, network management, and security management functionality.
- Have controlled access for a security policy. Gateway should have multiple user accounts with differing access to critical security and configuration parameters such that there can be secure network administration.
- Have multiple output protocols to ensure integration to a range of host applications. In any given process facility, there can be several types of DCS, PLC, and data historians requiring multiple protocols. Multiple output protocols allow convenient connectivity with a standard Gateway.
- Support multiple connections and, in effect, act like a server. Typical WirelessHART applications require data to be sent to multiple host applications in order to provide data to multiple end users.
- Support the secure transfer of all protocols over an Ethernet connection through a robust encryption process.
- Be interoperable and support the network management of WirelessHART devices from multiple vendors.

10.3 Wireless repeaters

There are no special requirements for a WirelessHART repeater. If a repeater is a WirelessHART device with a configurable update rate, then minimizing the update rate shall maximize the life of the battery module without impacting the network reliability.

If a vendor chooses to develop a WirelessHART device for the specific purpose of acting as a repeater, then that repeating device should be managed like any other WirelessHART device and subject to all the specifications of a WirelessHART device. WirelessHART adapters can be used effectively as repeaters if local power or a wired HART® device is available.

10.4 WirelessHART adapters

WirelessHART adapters connect to wired HART devices that are not inherently wireless and provide parallel communication paths through the 4-20 mA loop and the WirelessHART field network. The four main use cases for WirelessHART adapters are as follows:

- Access HART diagnostics that are not accessible due to limitations of the host system which may not detect the HART signal on the 4-20 mA loop.
- Provide wireless communications for HART devices which are not natively wireless.
- Enable device information to be accessed by multiple users who may not have direct access to the control system. In this scenario, the 4-20 mA signal is sent to the control room while the WirelessHART signal is used to access parametric and diagnostics data by maintenance or other personnel.
- Act as a wireless repeater.
WirelessHART adapter specifications are as follows:

- Adapter should not affect the 4-20 mA signals under normal operation or in failure mode.
- Adapter should operate like any other WirelessHART field device in the WirelessHART field network.
- Adapter should have a HART tag.
- Adapter should pass through the wired HART device process variable as well as remote access for configuration and calibration.
- Adapter should employ the same security functions and methods as a standard WirelessHART device.

10.5 WirelessHART handheld communicator

The handheld communicator is useful for the following:

- Carrying out device configuration
- Viewing network diagnostics and health reports
- Installing session keys
Section 11 Measurements and Choosing WirelessHART Devices

11.1 Use of WirelessHART® for multivariable process measurements

WirelessHART multivariable transmitters provide benefits including the following:

- Lower installed cost
 - Cost savings since fewer instruments are needed and the number of pipe penetrations is reduced.
- Increased accuracy
 - Accuracy improvement due to single transmitter.
- Multivariable measurements
 - Differential pressure
 - Static pressure
 - Temperature
- Calculation parameters for multivariable transmitter
 - Density gas expansion
 - Velocity discharge coefficient
 - Viscosity velocity of approach
 - Beta ratio Reynolds Number
- Parameters available to read at HMI
 - Mass flow
 - Volumetric flow
 - Energy flow
 - Totalized flow
 - Differential pressure
 - Static pressure
 - Temperature
11.2 Use of WirelessHART in various process applications

WirelessHART devices are available for pressure, flow, level, valve position, pH, conductivity, vibration, temperature, multi-input temperature, acoustic monitoring, level switches and contact inputs. Applications include:

- Safety and environmental monitoring
 - Pressure relief and safety valves
 - Monitor safety shower activation
 - Accurately measure emissions
 - Ensure environmental compliance
 - pH monitoring on effluent waste water
 - Rotating equipment

- Tough installation conditions for wires/remote locations
 - Hot
 - Corrosive atmosphere
 - Wet

- Movement
 - Rail cars
 - Skids
 - Flexible manufacturing

- Asset monitoring applications
 - Bearing and lube temperature
 - Filter differential pressure
 - Vibration monitoring on rotating equipment
 - Surface temperature
Section 12 Host System Requirements

Use of standard protocols .. page 75
Wireless host system .. page 75
Host integration ... page 77
Interoperability ... page 78
Host system support for WirelessHART functionality page 78
Device descriptions files (DD) ... page 79
Configuration tools ... page 79
Control system graphics .. page 79
Node addressing and naming conventions page 79
Alarms and alerts .. page 80
Maintenance station and asset monitoring page 80
Historian ... page 80

12.1 Use of standard protocols

Standard protocols should be used to ensure the most cost effective installation – examples include OPC, Modbus® TCP, Modbus RTU, HART® IP, etc. The WirelessHART® Gateway should convert data from the WirelessHART field network into the desired protocol and physical layer needed for integration into the host system.

12.2 Wireless host system

Data from WirelessHART field networks can be integrated into any existing host system. However, many wireless automation applications are not for control or process monitoring and may not be required to be accessed by the DCS or PLC system. This information may be useful to non-control room based personnel including reliability engineers, maintenance personnel, and energy engineers. Careful consideration should be observed for determining which information should be placed on control operations screens to prevent the dilution of critical information.

For example, suppose a wireless field network is used to replace a manual inspection round where a maintenance technician manually collects temperature and vibration data from a series of pumps and then manually enter the collected data into a data historian. Using WirelessHART, Figure 12-1 shows one possible way the Gateway can be integrated into the application, in this case a historian, for the automated collection of data.
For WirelessHART networks that support users in different roles, the potential exists for each end user to have their own application for collecting and analyzing data. For users who manually collect data, WirelessHART provides the missing piece to automation.

For long term scalability, where there may be 1000’s to 10,000’s of WirelessHART devices in a single plant. It is important to have a coordinated effort and standard process to enable end users with different roles and responsibilities to share the I/O capacity of Gateways. Representatives from maintenance, utilities, operations, health/safety/environmental, and asset management can share WirelessHART network resources.

One architecture to consider is a centralized historian and centralized asset management program shown in Figure 12-2. In this scenario, multiple Gateways are connected on the same Ethernet network and server. The data from multiple WirelessHART networks is sent to a centralized historian who can then be connected to the applications for each of the end users. In this way, host system resources can be shared, all WirelessHART instruments can report to the same asset management solution, uniform security policies can be enforced, and end users can see WirelessHART data in applications specific to their roles.
Developing a host system integration and data management strategy is essential to maximizing return on investment for wireless that is adopted on a large scale. Successful implementation means that data is going to the right people and being turned into information for action. Often times, multiple users will see the same data, but in the context of their applications. This also means that every time a new WirelessHART device is introduced to the plant, host system and integration issues do not need to be solved again and again.

WirelessHART is truly scalable; WirelessHART devices can be added to a network without disrupting operation and more Gateways can be added to increase I/O capacity. This ability allows automation to be added and expanded to solve problems without large project budgets once wireless network infrastructure is in place. For example, a WirelessHART device can be connected in minutes, configured in minutes, and integrated in minutes if a host system strategy is in place.

12.3 Host integration

Integration of data originating from the wireless Gateway into a host control system is normally performed in one of two ways - through native connectivity directly to the host system or using standard protocols such as Modbus or OPC.

For native connectivity including vendor specific I/O cards, contact the host vendor.

OPC and Modbus are non-proprietary protocols and use standard data exchange and integration techniques to map data from the Gateway into the host control system. Typical data that is mapped to the host are process variables (PV, SV, TV, QV), time stamps (if using OPC), and overall device status. Diagnostic information is typically passed to an asset management system via Ethernet. Check with the Gateway vendor for compatible asset management packages.

Often, existing host systems can be a combination of legacy DCS and PLC components and modern data management solutions such as data historians. WirelessHART Gateways should support multiple connections into multiple host systems over multiple protocols. This enables WirelessHART networks to support modernization of an existing host system. For example, suppose the existing DCS has no spare capacity and can only receive the 4-20 mA signal from wired HART devices. A WirelessHART network could be connected to the DCS to bypass the need for more Analog Input Cards to receive more process variables, while in parallel, HART diagnostics flow to an asset management program from existing wired HART devices with WirelessHART adapters. This type of modernization project could enable incremental modernization with an older host system and when the scheduled turnaround occurs to upgrade the DCS, the existing WirelessHART networks would transition to the new host system (see Figure 12-3 for an example transitional architecture).
A key output from working with host system administrators is an integration strategy to incorporate a plant-wide wireless infrastructure. If doing a small application, a key output is the physical locations of where to connect the Gateways. These will be needed for the network design process.

Key outputs for network design include:

- Identifying a host system administrator and system integrator who supports integration of WirelessHART data into the host system
- Potential physical connection points for WirelessHART Gateways

12.4 Interoperability

Converting WirelessHART data from the Gateway into standard protocols like Modbus and OPC ensures interoperability of all WirelessHART networks with all host systems. Host systems based on proprietary protocols will be more difficult to implement, maintain, and expand.

12.5 Host system support for WirelessHART functionality

A WirelessHART Gateway typically performs all management of the WirelessHART network and manages communications to and from the WirelessHART field devices. The host system should not require any special software to support the WirelessHART field network.
12.6 Device descriptions files (DD)

Host system, asset management system, or a handheld field communicator to communicate with a device needs to know the type of data exchange that takes place between host and device. It is also essential to know how to represent it on the user interface. DD file for the device provides this function.

WirelessHART DD files can be downloaded from the following HCF link:

12.7 Configuration tools

WirelessHART devices are based on the HART protocol; therefore, existing HART Field Communicators will work for configuration of the field devices. Field Communicators will require the proper device descriptor for configuration, which is the same for any other new HART device, wired or wireless. Host system configuration will be dependent on the host system. HART vendors with asset management software may extend the benefits of remote management from wired HART to WirelessHART devices connected to the Gateway.

12.8 Control system graphics

Not all data collected from the WirelessHART field network belongs on the operator screen as part of control system graphics. The risk is that non-pertinent information distracts the operator from critical information.

The host system integration should be configured such that data from a WirelessHART field network is delivered to the proper end-user even though network resources are shared. To give some examples:

- Data collected on consumption of power from rotating equipment should go to the utilities manager.
- Data collected on vibration spectrums of rotating equipment should go to asset management.
- Data collected on temperature alarms for rotating equipment should go to operators in a non-obtrusive way and to the reliability manager.

Properly defining an integration strategy will ensure an efficient collection of data from WirelessHART network and dissemination to proper end-users. Many end users are not typically receptive of the benefits of automation and have application specific databases into which data is manually collected and uploaded. With the ability to integrate WirelessHART data using standard interface protocols, these existing end-user specific databases can be automatically populated.

12.9 Node addressing and naming conventions

A WirelessHART device should follow naming conventions of wired HART devices.
12.10 **Alarms and alerts**

Alarms and alerts should be directed to the appropriate end-user and their associated application and software. Alarm and alert dissemination should be reflective of the end user and their responsibility. For more details refer to “Alarm recommendations for process plant” on page 43.

12.11 **Maintenance station and asset monitoring**

*Wireless*HART devices provide internal diagnostics and process variables like any wired HART device. Additional local diagnostics for network connectivity should be accessible locally via a HART Field Communicator with the correct Device Descriptor for the *Wireless*HART field device.

The *Wireless*HART Gateway should also provide additional diagnostics for network performance. The data from *Wireless*HART devices will not propagate to the host system if the data is deemed questionable from either a HART diagnostic or due to an extended delay in reception at the Gateway from the *Wireless*HART field device. The Gateway can notify the host system if communication problems exist. Additionally, the Gateway is responsible for *Wireless*HART network management and network diagnostics.

Diagnostics between the Gateway and the host system will depend on the host system and the Gateway.

12.12 **Historian**

Historic data collection can be treated the same as any conventional source (e.g. OSIsoft PI or any DCS historian package).
Section 13 Documenting in Intergraph SPI 2009

13.1 Section overview

WirelessHART® devices can be fully documented in Intergraph SPI with minimal customization. Below is an example of how to document WirelessHART in a logical, linear order and assumes the reader is skilled in working with Intergraph SPI. This is just an example to illustrate the methodology. Ultimately, it is the responsibility of project management to create and reinforce the application of standards and guidelines within the project environment.

13.2 User defined fields (UDF)

The first step is to create user defined fields that allow for the accounting of WirelessHART engineering parameters that are necessary for defining whether a point is wireless and how that point will be connected to a network.

Global UDFs should be created as illustrated in Figure 13-1.

Figure 13-1. : SPI UDF for WirelessHART
Type refers to the type of value that can be entered for the value of the UDF. In the case of all the WirelessHART parameters, these are all just CHAR (or characters, also meaning text). Likewise, the length refers to the max length that can be entered into the field.

Detailed definitions of WirelessHART SPI UDFs are presented in Table 13-1.

<table>
<thead>
<tr>
<th>UDF</th>
<th>Field type example</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>WirelessHART (Y/N)</td>
<td>Char Y</td>
<td>Identify a point as wireless at a high level. Will be used for quickly applying design guidelines to determine what is and what is not wireless.</td>
</tr>
<tr>
<td>Update Rate</td>
<td>Char 1, 2, 4, 8, 16, 32, 64+</td>
<td>WirelessHART devices will not all scan at 1 second like wired HART® devices. This value will be important for determining what devices may be WirelessHART as well as setting configuration parameters.</td>
</tr>
<tr>
<td>Gateway</td>
<td>Char GWY002</td>
<td>Defines which Gateway a WirelessHART device is to be associated.</td>
</tr>
<tr>
<td>WirelessHART Adapter</td>
<td>Char WHA001</td>
<td>Defines which WirelessHART adapter a wired HART device is associated with if a device does not have integrated WirelessHART capability.</td>
</tr>
<tr>
<td>Network Design Layout</td>
<td>Char A101.DWG</td>
<td>This is a reference field to a drawing or document that was used to validate network design best practices.</td>
</tr>
</tbody>
</table>

If the user chooses, SPI rules can be created such that these custom fields only appear for points that are HART or checked to be WirelessHART. This minimizes exposure to non-pertinent information for non-WirelessHART devices.

13.3 Filtered views

A custom view of the Instrument Index will be useful for applying design guidelines for selecting the instruments that are to be wireless as well as for seeing the organization of networks. Figure 13-2 is a sample view leveraging the UDFs shown in the previous section.
The “Criticality” and “Update rate” are foundations for any engineering guidelines that determine whether a device is WirelessHART. Some low criticality loops may have update rates faster than four seconds; include these with the design guidelines. Note that because WirelessHART devices primarily run on batteries, WirelessHART may not be suited for all fast update rate applications.

At a high level, using the “Criticality” and “Update Rate”, engineers can determine whether a device should be WirelessHART. If wireless, the device will need to be associated with a Gateway. If a device can only be specified as a wired HART device and requires a WirelessHART adapter, then the “WirelessHART Adapter” tag information should be defined.

Validate every WirelessHART field network against network design best practices. “Network Design Layout” provides a reference field to link to the drawing on which network design best practices were checked.

13.4 Creating instrument types

Early in the process, define symbols and instrument types and develop a WirelessHART instrument library. Figure 13-3 illustrates the basic modifications to a HART device to create a WirelessHART instrument type.

Figure 13-3. Defining WirelessHART Instrument Type In SPI

![Instrument Type Selection](image)

The first step is to create a new device with a new description. In this example, a WirelessHART flow transmitter is created. Please note that if the device will be specified as a wired HART device with a WirelessHART adapter, no new instrument types are necessary.
Figure 13-4. Defining a New WirelessHART Instrument in SPI

Nothing needs to change on the general tab. Be sure to leverage that the device is a HART AI or a HART AO so that all of the basic parameters of HART apply. Manage the wiring, or lack of wiring separately. The fact that WirelessHART is based on HART allows leverage of these pre-defined variables.

Figure 13-5. Defining Wiring Types in SPI

Check the box to include the wiring. If this box is not checked when SPI generates loop drawings, the device cannot be added to loop drawings. This also allows for flexibility for different wiring configurations, to be defined elsewhere. Examples include wiring WirelessHART adapters in series with the loop and line power for WirelessHART devices. This process should be repeated for each unique WirelessHART instrument type.
There are only two instrument types that are unique to WirelessHART and could be considered ancillary - the WirelessHART Gateway and the WirelessHART adapter. To create these instrument types, it is recommended to use the symbols YG for a WirelessHART Gateway and YO for a WirelessHART adapter.

Once the instrument type is defined, the device panel properties can be modified to include reference symbols. It is recommended to assign symbols for both the Enhanced SmartLoop and the cable block drawing.

Figure 13-6. Assigning Symbols In SPI

Basic symbols can be created in SPI using the editing tools. Below are examples for WirelessHART field devices and a WirelessHART Gateway. The zig-zig symbol shown below is defined by ISA. For more documentation, nothing special is required since signaling is typically not well indicated. For auto-generated documents, it may be useful to include the update rate by referencing the UDF, although this is not an absolute requirement. Most importantly, the project management team decides on a symbol convention and remains consistent throughout the project.

WirelessHART Gateway Symbol

WirelessHART Device Symbol

WirelessHART devices can be connected to a WirelessHART Gateway using the User Defined Field. This type of drawing does not show the path through the WirelessHART network, but does show the relationship of the WirelessHART device and the WirelessHART Gateway; Figure 13-7 is an example from the ISA-5.1.
Figure 13-7. ISA 5.1 Drawing Example

B.9.5 Shared Display, Shared Control and Wireless Instrumentation:

Note that inclusion of update rates and the wireless signal symbol are optional. The authors of this document found the practice of including such information supportive of adopting and managing the unique attributes of WirelessHART.

13.5 Loop drawings

Given that WirelessHART field devices do not require signal cabling, the documentation of the equivalent of wireless loop drawing is very simple to create.

The key information is to relate each wireless field device to the respective Gateway. It is recommended that a basic wireless loop drawing show the traditional tag information as well as the WirelessHART UDFs. This way, it is very clear to see which wireless devices are associated to which WirelessHART Gateway. Currently, Intergraph SPI 2009 does not have the means to implement this in a specific drawing, thus it is recommended to use the Instrumentation Index showing the WirelessHART UDFs.

This list can then be filtered and printed by Gateway. A key piece of information is the link to a drawing verifying that best practices have been verified which can also include physical instrument location.
13.5.1 Loop drawings for WirelessHART adapters

A WirelessHART adapter is an accessory to a loop and should be treated as a loop accessory like a multiplex or transient protection. Loop accessories are traditionally not indicated on the loop drawing and are installed on site. It is recommended for simplicity that there are no modifications for the loop drawing of a wired HART device to reflect the presence of a WirelessHART adapter.

The WirelessHART adapter would be properly documented and accounted for on the Wireless Loop Drawing that shows the Gateway and all associated WirelessHART devices.

13.5.2 Gateway cable block drawings

A useful drawing to create is a Gateway cable block drawing (refer to Figure 13-10) showing the Gateway power and communication connections. All WirelessHART Gateways, regardless of vendor, should have uninterruptable power supplies to maximize system reliability.

In addition to a cable block diagram, another useful drawing could show all Gateways assigned to an area on the same document.

Table 13-2 documents WirelessHART configuration parameters.
Since WirelessHART is derived from wired HART, other specification fields should be completed as if it is a wired HART device.

Table 13-2. WirelessHART Configuration Parameters

<table>
<thead>
<tr>
<th>Specification field</th>
<th>Typical value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Update rate</td>
<td>4, 8, 16, 32, 64+</td>
</tr>
<tr>
<td>Power supply</td>
<td>Intrinsically safe, field replaceable battery</td>
</tr>
<tr>
<td>Communication type</td>
<td>WirelessHART</td>
</tr>
</tbody>
</table>

Figure 13-11. WirelessHART Instrument Specification Sheet

13.6 Drawings in smart plant layout (SPL)

All WirelessHART devices can be indicated in drawings without deviation from the practices used for wired HART devices.

WirelessHART Gateways should be located according to the network design guidelines.
13.7 **Documenting security information**

The *WirelessHART* security parameters of Network ID and Device Join Key(s) should not be a part of a wireless loop drawing or in the SPI design environment. These are security parameters used to protect the network and should be managed per a local security policy implemented by the Owner/Operator. The Network ID and Device Join Key(s) are not required for the design. The wireless loop drawing associates the WirelessHART device with the *WirelessHART Gateway* tags. Separately, secure documents containing WirelessHART security provisioning including the *WirelessHART Gateway* tag can be used to cross reference the Network ID and Join Key(s). Remember, all Network IDs and common Device Join Keys (if used) should be unique for every Gateway and every *WirelessHART* field network. This type of security management is similar to the management of security information for control systems and servers.
A sample specification for a WirelessHART® Gateway is shown below.

Figure A-1. ISA Sample Wireless Gateway Specification Sheet

<table>
<thead>
<tr>
<th>Tag No.</th>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

GENERAL

<table>
<thead>
<tr>
<th>2</th>
<th>Function</th>
<th>Sheet</th>
<th>Indicate</th>
<th>Control</th>
<th>Blind</th>
<th>Integ.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Case</th>
<th>MFR STD</th>
<th>Non-Sure</th>
<th>Color</th>
<th>MFR STD</th>
<th>Other</th>
<th>Blake</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Mounting</th>
<th>Flap</th>
<th>Surface</th>
<th>Rack</th>
<th>Multi-Cart</th>
<th>Other</th>
<th>Fields</th>
<th>Without remote antenna</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Enclosure Class</th>
<th>General Purpose</th>
<th>Weather Proof</th>
<th>Explosion Proof</th>
<th>Class</th>
<th>GAS</th>
<th>1</th>
<th>EX</th>
<th>Other</th>
<th>PROF</th>
<th>IPC</th>
<th>ISA</th>
<th>62501 wirelessHART</th>
<th>Field Network</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Point Supply</th>
<th>11 V DC</th>
<th>Other</th>
<th>Power</th>
<th>24</th>
<th>Volt</th>
<th>3.0</th>
<th>Current</th>
<th>Time Rate</th>
<th>Range</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Chart Drive</th>
<th>Speed</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Scale</th>
<th>Type</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONTROLLER

<table>
<thead>
<tr>
<th>9</th>
<th>Control Modes</th>
<th>P</th>
<th>Prop (Gain), I</th>
<th>Integral (Auto Reset), D</th>
<th>Derivative (Rate), S</th>
<th>Set:</th>
<th>Sat:</th>
<th>E</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Action</th>
<th>On/Off</th>
<th>Increase</th>
<th>Increase</th>
<th>Decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
<th>Set Point Adjust</th>
<th>Manual</th>
<th>External</th>
<th>Remote</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12</th>
<th>Manual Reset</th>
<th>None</th>
<th>MFR STD</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13</th>
<th>Output</th>
<th>4-20 mA</th>
<th>10-50 mA</th>
<th>25-103 kPa</th>
<th>4-20 mA</th>
<th>25-103 kPa</th>
<th>4-20 mA</th>
<th>Other</th>
<th>ISA</th>
<th>52501 wirelessHART</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

INPUTS

<table>
<thead>
<tr>
<th>14</th>
<th>Input Signals</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15</th>
<th>Power for XMT/RX</th>
<th>External</th>
<th>This box</th>
<th>No. of Independent Supplies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>For Transmission, See Spec Sheet</td>
<td></td>
</tr>
</tbody>
</table>

ALARMS

<table>
<thead>
<tr>
<th>16</th>
<th>Alarm Switches</th>
<th>Quantity</th>
<th>Form</th>
<th>Function</th>
<th>Rating</th>
<th>Input Type</th>
<th>Input Unit</th>
<th>Contact to</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17</th>
<th>Options</th>
<th>Filter</th>
<th>Supply Cap</th>
<th>Chart</th>
<th>Int. Illumination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Multiple Ethernet connections, remote mount options, additional output protocols, additional hazardous area approvals</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Support device burn (max) rate from 4 seconds to 60 minutes.
Appendix B Design Resources

B.1 Section overview

WirelessHART® vendors develop network design tools to support:

- Network design
- Gateway capacity planning
- Battery life estimation by device type

Below are known network design tools. Contact your WirelessHART vendor for more information.

B.1.1 Network design tools

Wireless planning tool

Use this tool to upload an aerial image of plant (or a segment of a facility) and design a wireless network. The wireless planning tool checks the wireless network for compliance with industry best practices.

AMS® Wireless SNAP-ON™

Use this automated tool for designing and testing network design, and also to monitor networks after installation.

- Click here for more information.

Emerson Process Management™ power module life estimator

Use this tool to estimate battery life by wireless device type, factoring in update rate and environmental variables.

- Click here to access the tool.

Emerson Smart Wireless estimator

Use this tool to estimate and compare cost and time savings for wired verses wireless automation.

- Click here to access the tool.

Emerson Smart Wireless tools and resources

Current and future tools and resources can be found by clicking here.
Appendix C Wireless Spectrum Governance

Wireless applications have been deployed in the process industry for over 40 years. In any process facility, applications exist using RF signals including personnel communications, RF ID systems, ad hoc systems, and cell phones. The essential ingredients that have made wireless automation feasible were solving the problems of power to enable devices to operate on batteries for multiple years; self-mitigating RF obstacles in the process environment so expert wireless knowledge was not a requirement for adoption; and coexisting with other RF sources.

WirelessHART® operates in the 2.4 GHz Industrial, Scientific, and Medical (ISM) radio band that typically operates from 2.400-2.480 GHz. The exact frequency limitations and RF output power levels may be slightly different country by country. WirelessHART employs limitations that allow for universal operation in almost all countries with exceptions being noted for specific products by device manufactures. The ISM radio bands are license-free, but do require approval from governmental regulating agencies. These approvals are typically obtained by the WirelessHART vendor. Since vendors for multiple applications can use the same spectrum, WirelessHART must be able to successfully coexist.

WirelessHART uses multiple techniques to coexist with other wireless applications:

- **Network segmentation** – allows thousands of WirelessHART devices to exist in the same physical space, provided each network has a unique network ID.
- **Spectrum isolation** – wireless applications in different portions of the RF spectrum do not “see” each other and thus do not interfere with each other.
- **Low power** – WirelessHART devices are very low power relative to handheld personnel communicators, Wi-Fi, and RFID readers. This helps prevent WirelessHART interference with these high power applications.
- **Spatial hopping** – self-organizing mesh networks can hop on different paths that may be exposed to different RF conditions. The WirelessHART devices self-organize paths through the process environment that mitigate RF obstacles the same way as physical obstacles.
- **Channel hopping** – WirelessHART devices use 15 channels within the 2.4 GHz spectrum. Pseudo-random channel usage ensures that interference on one or several channels does not prevent reliable communications.
- **DSSS coding** – allows transmissions to be modulated with unique encoding for the purposes of jamming resistance, channel sharing, and improved signal/noise level. DSSS Coding extends radio receiver sensitivity through digital processing.
- **Time Synchronized Mesh Protocol (TSMP)** – provides the synchronized time slots which schedule coordinated network communication, only when required in order to preserve battery life and reduce interference.

Despite these coexistence features, it is still beneficial to have some form of wireless governance. WirelessHART can be interfered with, but only under severe conditions that likely will disrupt all wireless applications operating in the 2.4 GHz spectrum such as Wi-Fi and Bluetooth®.

A key example is broadband interference. Many legacy wireless systems have high power. As an example, consider a personnel communication system using high power two-way radios operating in the 800 MHz frequency range. Although the system is legal and operating according to specifications, it can emit broadband interference that spans several GHz in the...
spectrum. This broadband interference then affects all applications in other RF bands by reducing the signal-to-noise ratio. The simple solution is to place a band pass filter on all systems such that they only emit RF energy in the spectrum licensed for usage. See the illustrative diagram below showing broadband interference before and after the implementation of a low pass filter.

Figure C-1. Installing a Low-Pass Filter

![Diagram showing broadband interference before and after the implementation of a low-pass filter]

Most government agencies make the licensing of high power radios public information since there is the potential to interfere with private and public entities other than the licensee. In the United States, the federal government makes all licensed radios searchable at http://wireless2.fcc.gov/UlsApp/UlsSearch/searchLicense.jsp. If a facility has licensed radios, efforts should be made to verify low-pass filters are in place on high powered systems in all RF bands. The regulations were created before the advent of low-power systems, including Wi-Fi, and future consideration was not given to coexistence of low power with high power systems. Other countries are also likely have a similar type of searchable database.

Installing passive low pass filters is straight forward and typically requires insertion of the filter in series with existing RF cabling and proper resealing of RF connections. All existing wireless will benefit by the installation including Wi-Fi.

The emerging 802.11N Wi-Fi standard may emit broadband interference if operating a non-802.11N application in the 2.4 GHz ISM radio band. Relative to 802.11B or 802.11 G which use a single Wi-Fi channel (typically 1, 6, or 11 in North America), 802.11N will use multiple adjacent channels to enable increased bandwidth for demanding applications such as bulk data transfer, security cameras, and streaming video. 802.11N can be operated in either the 2.4GHz ISM band or the 5.8 GHz ISM band. Operation in the 5.8 GHz band applies the principle of spectrum isolation and comes with the additional advantage that 5.8 GHz RF signals can transfer information much faster than 2.4 GHz RF signals due to the much faster modulation.

Another emerging standard is Wi-Max, which operates in the 2.3 GHz, 2.5 GHz, or 3.5 GHz radio bands. Although these spectrums do not overlap the 2.4 GHz spectrum, there are no provisions in the Wi-Max standard to adopt or enforce the usage of low-pass filters in either clients or Access Points. The high power of Wi-Max has the potential to interfere with all wireless...
applications specifically designed for operation in the 2.4 GHz spectrum. Wi-Max clients should have limited deployment in or near the process facility. Installing passive low-pass filters on each segment of a Wi-Max antenna will further mitigate potential interference problems.

Aside from managing potential broadband interference sources, below is a summary of key considerations for wireless governance:

- A local wireless governance policy should serve the purpose of documenting all wireless sources in a plant and enforcing best practices for wireless coexistence.
- Enforce proper installation and compliance with regulation for all wireless applications with regards to power levels, spectrum usage, and encryption in accordance with government regulation.
- Provide guidelines for wireless applications spectrum usage.
 - Limit 802.11N Applications to 5.8 GHz ISM radio band.
 - Use low-pass filters on all high-power RF systems.
 - Put high bandwidth wireless applications such as security cameras in the 5.8 GHz radio band.
 - Ensure all RF coaxial cables are properly installed with weather sealant tape or comparable method to mitigate reduction in performance due to exposure to the environmental elements.
- Support proper segmentation of WirelessHART networks.
 - Every network in the process facility should have a unique Network ID and Join Keys.
 - WirelessHART networks can overlap in the same physical space without causing interference problems with each other. Gateway antennas should be installed at least 1 meter apart.
Appendix D: References

<table>
<thead>
<tr>
<th>Topic</th>
<th>Reference</th>
</tr>
</thead>
</table>
DHS – Main Control Systems Security Program (CSSP) website: http://www.us-cert.gov/control_systems (An actively supported government resource for Industrial Control System security information, many links to other resources)
DOE – “21 Steps to Improve Cyber Security of SCADA Networks” (an oldie but a goodie) www.oe.netl.doe.gov/docs/prepare/21stepsbooklet.pdf
NSA – “Defence in Depth” (excellent whitepaper on this important security concept) www.nsa.gov/ia/_files/support/defenseindepth.pdf